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A B S T R A C T

Current trends in semantic parsing primarily use large, pre-trained neural language
models. These models achieve impressive scores but also present some drawbacks.
They require vast amounts of training data, cross-lingual performance is often sub-
optimal and their performance usually decreases for longer input sequences. Addi-
tionally, the output of these models lacks explainability: why are resulting meaning
representations composed the way they are? This becomes particularly relevant
when a model produces strange output or when it makes mistakes.

This thesis outlines an approach to semantic parsing that uses transparent and
explainable graph transformations. We apply these transformations to a Universal
Dependencies (UD) parse tree and primarily target language-neutral features. Af-
ter these structural transformations, we substitute syntactic labels with semantic
concepts to compose our final meaning representation. We target Discourse Rep-
resentation Structures as our semantic formalism. Our system1 is developed and
evaluated using English, Dutch, Italian and German data from the Parallel Meaning
Bank project.

Recent developments regarding Discourse Representation Structure notations
have shown that, while not originally intended to be graphs, they can be repre-
sented as simple, directed acyclic graphs. These simple graphs already somewhat
resemble UD parse trees. This is our main motivation for using graph transforma-
tions. We test our method on output from two ‘off-the-shelf’ state-of-the-art UD
parsers: Stanza and Trankit.

The main question we want to answer is how our approach compares to a fully
neural sequence-to-sequence semantic parser. In addition, we formulate three sub-
questions: to what extent is our approach language-neutral, how does our approach
deal with input sequences of various lengths and how does our approach handle
negation and quantifier constructions.

We compare our system to an English neural system. Our approach performs
similarly to the neural method when there is not an abundance of data available
to train the neural model. On the evaluation dataset, our system manages a macro
F1-score and error rate of 81.5 (0.5% error). The neural model achieves 81.7 (3.9%).
When using a more strict evaluation method regarding ill-formed graphs, the neu-
ral model drops to 78.4 (8.3%) and our results stay the same. Additionally, our
approach outperforms this neural model on longer input sequences.

When there is a lot of training data available for the neural method, our ap-
proach lacks behind in scoring. This model achieves a score and error rate of 91.8
(2.8%). Using the strict evaluation, it manages 90.5 (3.7%). Our method does keep
up with this model on longer input sequences and produces less ill-formed output.

Our approach is almost fully language-neutral. Some constructions (e.g., nega-
tion) are not covered by language-neutral UD information and need language-
specific features. These are, however, simple and only consist of a list of ten to
twenty words per language. Our negation detection works well. The same is true
for quantifier detection, although recall could be improved there.

Our approach is a transparent, almost language-neutral semantic parser that
shows good performance on four languages, all achieving F1-scores of >75.0, even
with little training data. Our approach currently does not assign proper scope to
negation and quantifiers. This is an area of improvement, in addition to better
handling of named entities, correctly parsing date and numerical expressions and
supporting more complex constructions. In the future, these can be improved by
leveraging external resources and systems that go beyond just UD.

1 System source is available at: https://github.com/WPoelman/ud-boxer.
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1 I N T R O D U C T I O N

When diving into the literature surrounding semantic parsing, one cannot avoid a
sentence like the following:

“Semantic parsing is the task of mapping a natural language expression to a
machine-interpretable meaning representation.”

These sentences are often the first or second in a given paper or book. Numerous
variations exist, but they all convey the same idea. This idea also encompasses the
goal and task of the current project. Of course, for experts in the field, this alone
is enough to convey what task is being tackled, but there is a lot to unpack in
this relatively short sentence. So, to start, let us take a step back and outline what
semantic parsing is in the context of the current project.

We start with a natural language expression, this can be a word, a sentence, multi-
ple sentences, even a book and so on. In semantic parsing this expression is usually
a single sentence or a small number (say, < 10) of related sentences. We can analyze
and decompose these expressions from several linguistic perspectives that build on
top of each other (Jurafsky and Martin, 2009):

• Morphology - Knowledge of the meaningful components of words.

• Syntax - Knowledge of the structural relationships between words.

• Semantics - Knowledge of meaning.

• Pragmatics - Knowledge of the relationship of meaning to the goals and inten-
tions of the speaker.

• Discourse - Knowledge about linguistic units larger than a single utterance.

Semantic parsing aims to create a representation of the meaning of an expres-
sion. To do this, we can (often need to) use morphological, syntactic and possibly
‘external’ information (such as a knowledge base). We can construct this informa-
tion in such a way that it is unambiguous, has a canonical form and can be reasoned
with.

A famous example to illustrate ambiguity is the sentence: “I made her duck”
(Jurafsky and Martin, 2009). There are numerous interpretations possible, I cooked
duck for her, I made her quickly bow her head, I crafted her toy duck and so on.

Let’s assign some simple syntactic information to differentiate these interpreta-
tions:

I made her duck
PRON VERB PRON NOUN
PRON VERB PRON VERB

This helps a bit, but we are still left with an ambiguous sentence. Made as in cook
and made as in crafted both refer to verbs. Duck as in food and duck as in (toy) animal
both refer to nouns. To make these words unambiguous, we can use an external
lexical resource like WordNet1 (Miller, 1994; Fellbaum, 1998) to accurately define
which interpretation (sense) of a given word we mean:

1 Other lexical resources that serve similar purposes exist as well. WordNet is chosen since it is also used
in the rest of the project.

1



introduction 2

• make.v.06 - Create or manufacture a man-made product.

• make.v.39 - Prepare for eating by applying heat.

• duck.n.01 - Small wild or domesticated web-footed broad-billed swimming bird usu-
ally having a depressed body and short legs.

• duck.n.02 - Flesh of a duck (domestic or wild).

A synset (sometimes referred to as a concept) of a word is made up of its lemma,
a simple part of speech tag and a sense number that indicates a particular interpre-
tation. The use of a lemma, instead of an inflected form, also relates to the need
for a canonical form. In semantic parsing, tense is often modeled separately, not by
using verb inflections.

We can now express our interpretation of the sentence in a much more unam-
biguous manner, but we are currently just dealing with individual words. For a
simple sentence like this, that might be sufficient, but for more complex sentences,
we also need to disambiguate the relations between words. Consider the following
sentence: “Tom saw the man on the mountain with a telescope”.

We can disambiguate the individual words, but we are still left with an ambigu-
ous sentence. Who has the telescope? Did Tom look through the telescope? Who is
standing on the mountain?

To solve this problem we can use thematic roles. These roles indicate relations
between words or multiple words. There are various lexical resources that provide
such roles, such as PropBank (Kingsbury and Palmer, 2002), FrameNet (Ruppen-
hofer et al., 2006) and VerbNet (Kipper et al., 2008). The meaning representation
we use in this project uses the latter, so let’s do that here as well. To disambiguate
who used the telescope, we connect the telescope to its user with the User role. We
can also connect the person standing on the mountain with a Location role. It is
important to note that these connections should be directed, otherwise we are still
dealing with a possibly ambiguous representation.

Let’s introduce a time node, also with an unambiguous synset, that indicates
when the event occurred. For this, we need to introduce additional (logical) opera-
tors, such as (in)equality and temporal relations. We can compare the time of the
event with now and indicate how it relates to it. Our example sentence describes an
event in the past, so we can use TPR (preceding).

If we combine all of this, we have a simple, yet rather expressive meaning repre-
sentation. Figure 1 shows what we can convey with this representation:

person.n.01

Tom

Name

telescope.n.01

User

man.n.01

mountain.n.01

Location

see.v.01

Experiencer Stimulus

time.n.08

Time

now

TPR

(a) Tom, using a telescope, saw the man on the
mountain.

person.n.01

Tom

Name

man.n.01

mountain.n.01

Location

telescope.n.01

User

see.v.01

Experiencer Stimulus

time.n.08

Time

now

TPR

(b) Tom saw the man, who was on the mountain,
using a telescope.

Figure 1: Basic meaning representation examples.

We are lacking some features to express more complex constructions (Abend
and Rappoport (2017) give a good overview of what components most meaning
representations provide), but this is a good start.

We now have a global overview of what we want to accomplish with semantic
parsing and what general components are involved. This brings us to the final part
of our requirements for semantic parsing, being able to reason with the generated
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meaning representations. These representations can be used for many Natural Lan-
guage Processing (NLP) tasks, in particular Natural Language Understanding (NLU).
One downstream task could be event extraction (Schuster et al., 2017), where a mean-
ing representation can be used to show what events occur in a given sentence, the
actors involved and how they relate to each other. Another use might be to target
a query language as the required meaning representation (Li et al., 2020). This rep-
resentation can then be used to query a knowledge base to answer questions for
instance.

Application to a particular downstream task is outside of the scope of the current
project. We purely focus on creating the meaning representations. Of course, we
would like to have a system that can do this automatically, where it produces a
likely representation of a given expression.

Semantic parsing has a long and varied history with many different methods
and formalisms. A quote from Evang (2019) summarizes this well:

“A spectrum is haunting semantic parsing, the spectrum ranging from tradi-
tional semantic grammars on one end to recent sequence-to-sequence methods
on the other.”

Current state-of-the-art results in semantic parsing all come from neural models
or hybrid neural models (van Noord et al., 2020; Zhou et al., 2021; Bevilacqua et al.,
2021; Bai et al., 2022). These models achieve very impressive scores, but this per-
formance comes at a cost. Most of these models are based on pre-trained language
models with billions of parameters. These are practically impossible to explain
and often require vast amounts of training data. In recent years, explainability of
machine learning and artificial intelligence has gained a lot of traction since these
techniques are being used in more and more areas. In semantic parsing, we are
interested in meaning. The methods and processes by which we get and represent
this meaning are crucial components. Especially when it comes to errors in a mean-
ing representation. It is very difficult to determine why such a huge neural model
made a mistake. Was it due to errors or bias in the training data (either in pre-
training or finetuning)? Does the model make wrong assumptions? Is the model
not understanding something? High scores are just one aspect of a larger picture,
explainability and performance in situations with little training data are arguably
just as important.

The current project proposes a system that uses (symbolic) transparent graph
transformations applied to output generated by neural models to produce its mean-
ing representations. While it is not a fully integrated model, the approach could be
characterized as neuro-symbolic (Li et al., 2020; Susskind et al., 2021). These graph
transformations are applied to a Universal Dependencies (de Marneffe et al., 2021)
dependency parse tree and primarily target language-neutral features. We test our
system on English, Dutch, Italian and German, respectively. We go into more de-
tail regarding all these points in the next sections. The project aims to answer the
following main research question:

How do Discourse Representation Structures derived from Universal Depen-
dencies using a graph transformation approach compare to those created by a
fully neural sequence-to-sequence model?

We formulate three sub-questions regarding the evaluation of the systems. Our first
sub-question:

RQ1: To what extent would such an approach be language-neutral or easily
transferrable to multiple languages?

One of the key characteristics of Universal Dependencies is the large number of
language-neutral features it can express. These include morphological, syntactic
and dependency-related features. The prospect of leveraging this information for
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semantic parsing is promising. Language-neutral semantic parsing with such a well-
established framework could be very helpful. Little or no special treatment would
be needed for adding new languages on the semantic parser side, only on the UD
side. This is what we want to examine with RQ1.

Our second sub-question:

RQ2: How well does such an approach deal with input sequences of various
lengths?

State-of-the-art neural language models are somewhat notorious for their drop-off
in performance for long input sequences (Press et al., 2021). Recent research in that
field is focused on improving this, but it is still a shortcoming of numerous popular
large pre-trained language models. As we have mentioned, semantic parsing in the
current project is focused on rather short sentences. Still, it is beneficial to take a
look at how our approach and a neural approach perform on input sequences of
various lengths. This can help us find possible areas of improvement for a particular
system. We are also interested in seeing if our graph transformation approach
suffers from the same performance drop-off as the neural models. We want to
explore this aspect in answering RQ2.

Finally, our third sub-question:

RQ3: How well does such an approach handle negation and quantifiers con-
structions?

Negation is a crucial phenomenon in semantic parsing. If one wants to reason with
a semantic meaning representation, truth values are essential. Within semantic
parsing, negation detection and assigning scope to negation are two entire research
areas on their own (Morante and Blanco, 2012). In addition to a single negation
clause, such as in Tom is not doing that right now, multiple negation clauses are
commonly used to model quantifiers. If we want to create a meaning representation
for the sentence Everybody is doing that, we can encode it as There is not somebody
who is not doing that. Semantically, this conveys the same meaning and we need two
negation clauses to encode this. Since these are such essential phenomena, we want
to examine how our approach and the neural systems handle these.

The next chapter covers the meaning representation we target in this project.
We give a brief overview of the Universal Dependencies framework. We provide
background information on graphs and how this format plays a crucial role in our
approach. We cover related work regarding semantic parsers and introduce the
dataset and evaluation method used in the project. We outline our method, evaluate
it and compare it with a fully neural parser. We discuss our results and provide an
error analysis. Lastly, we answer our research questions, list our final conclusions
and suggest directions for future work.



2 B A C KG R O U N D A N D R E L AT E D W O R K

Semantic parsing is a broad field with many formalisms, methods and approaches.
In this chapter, we cover our target meaning representation (Discourse Representa-
tion Structures) as well as our input (Universal Dependencies). We give an overview
of how Universal Dependencies have been used in semantic parsing. We discuss
several implementations of semantic parsers. We also outline some of the differ-
ences between the methods these parsers implement. With this, we show how our
method fits into the existing landscape of semantic parsers and in what ways it
provides novel approaches.

2.1 Discourse Representation Structures
The basic meaning representation from Chapter 1 is a stripped-down and graph-
like version of Discourse Representation Structures (DRSs)1. This formalism stems
from Discourse Representation Theory (DRT), originally developed by Kamp (1981).
DRT has seen many iterations and improvements over the years. DRSs are complex
structures that can contain discourse referents, logical operators, DRSs embedded
in DRSs and more. Traditionally, DRSs are represented using boxes that indicate
what referents and events belong to the same scope (box). Figure 2 shows what our
examples from Figure 1 look like in box notation:

x e y z l t
person.n.01(x)

Name(x,"Tom")
User(x,z)

see.v.01(e)
Experiencer(e,x)
Stimulus(e,y)

telescope.n.01(z)
mountain.n.01(l)
man.n.01(y)

Location(y,l)
time.n.08(t)

t ≺ now

(a) Tom, using a telescope, saw the man on the
mountain.

x e y z l t
person.n.01(x)

Name(x,"Tom")
see.v.01(e)

Experiencer(e,x)
Stimulus(e,y)

telescope.n.01(z)
mountain.n.01(l)
man.n.01(y)

User(y,z)
Location(y,l)

time.n.08(t)
t ≺ now

(b) Tom saw the man, who was on the moun-
tain, using a telescope.

Figure 2: Box notation of our example representations from Figure 1. Note that the notation
style is not classic DRT. Instead, it is in the style that is used in the Parallel Meaning
Bank project.

Note that in DRT, WordNet synsets are not necessarily used, we incorporate
these since the current project uses the Parallel Meaning Bank (PMB, Abzianidze
et al. 2017) as its dataset. In there, non-logical symbols in DRSs are expressed using
WordNet synsets. We discuss the dataset in more detail in Chapter 3.

The box notation in Figure 2 is quite different from the graph-like notation from
Figure 1. DRSs are in fact not strictly graphs, however, recent work on DRS no-
tations has shown that they can be represented as simple graphs without losing
expressive power (Abzianidze et al., 2020; Oepen et al., 2020; Bos, 2021). This graph

1 When referring to DRSs, we specifically mean DRSs with neo-Davidsonian event semantics.

5



2.1 Discourse Representation Structures 6

representation of DRSs lies at the core of the current project. We discuss this more
in Section 2.3.

Several notations for DRSs exist. Three are available in the PMB: the box notation,
the clause notation and the Simplified Box Notation (SBN). Figure 3 shows all three
notations for the sentence Tom doesn’t have a microwave oven.

x1

male.n.02(x1)
Name(x1, tom)

¬

x2 e1 t1
time.n.08(t1)

t1 = now
have.v.04(e1)

Time(e1, t1)
Theme(e1, x2)
Pivot(e1, x1)

microwave_oven.n.01(x2)

(a) Box Notation.

male.n.02 Name "Tom"
NEGATION -1
time.n.08 EQU now
have.v.04 Pivot -2 Time -1 Theme +1
microwave_oven.n.01

(b) Simplified Box Notation.

b1 REF x1 b2 NEGATION b3
b1 Name x1 “tom” b3 REF e1
b1 PRESUPPOSITION b2 b3 Pivot e1 x1
b1 male “n.02” x1 b3 Theme e1 x2
b2 REF t1 b3 have “v.04” e1
b2 EQU t1 “now” b3 REF x2
b2 time “n.08” t1 b3 microwave_oven “n.01” x2
b3 Time e1 t1

(c) Clause Notation.

Figure 3: DRS notations in the PMB for the sentence Tom doesn’t have a microwave oven.

These notations are all logically equivalent and useful for different applications.
They can be transformed from one to the other without losing information (Bos,
2021). We focus on SBN for the current project.

This notation, developed by Bos (2021), shows that DRSs can represented as
simple, Directed Acyclic Graphs (DAGs). SBN models triples by introducing a node,
the label of the outgoing edge and another node or an index to a node defined
previously or that will be defined later on. The characteristics of the nodes and
edges in SBN are shown in Table 1. A central ingredient of this notation is its lack
of variables, which makes processing it much simpler compared to notations with
variables. The graph that SBN models is a type of Discourse Representation Graph
(DRG). Previous iterations of DRGs were a lot more complicated. Examples include
formats from Abzianidze et al. (2020) or Oepen et al. (2020). They used rather
verbose notations where either variables were explicitly modeled in the graph or
edges were represented as nodes. SBN is quite a bit simpler in that regard and, as a
result, already resembles a Universal Dependencies tree much more than the other
notations.

Note that in the DRG that SBN models, nodes do not directly correspond to
words or tokens in a sentence. Compound words that have a WordNet entry should
be represented as their ‘combined’ entry. An example is the microwave_oven.n.01

synset that we have seen. Similarly, multi-word expressions, such as names, can also
be represented by a single constant node. Another important thing to note is that
box nodes by themselves do not represent anything meaningful. Outgoing edges
to synset nodes provide the meaning they should convey, namely to assign scope.
The meaning of multiple boxes is represented by box-to-box edges. b1 NEGATION

b2, for instance, indicates that the content (nodes in its scope) of b2 is negated and
that this relates to the content of b1. Negation is an important aspect in this type
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Table 1: SBN DRG characteristics, note that boxes and regular box connections are unlabeled.

Description Examples Can have child nodes

Node types
Synset (S) person.n.01, have.v.04 yes
Constant (C) now, “John Doe”, ‘2022’ no
Box (B) - yes

Description Examples Node connections

Edge types

Thematic role Agent, Time, AttributeOf S → S, S → C

DRS operator EQU, NEQ, TPR S → S, S → C

Box connection - B → S

Box-to-box connection NEGATION, RESULT B → B

of graph since it is also used to model certain quantifiers. If we want to express
the sentence Everyone’s eating, we have to encode this with two NEGATION edges and
three boxes. Essentially this is stating that There is not someone who is not eating,
which, semantically speaking, is the same as the original sentence. We discuss
negation in more detail in Section 2.7. Figure 4 shows how we visualize DRGs in
this thesis and how this particular example is encoded. This style of visualizing
DRGs is very similar to the one used in Bos (2021). The dotted edges are the box
connections that assign scope.

NEGATION

person.n.01

NEGATION

time.n.08

eat.v.02

now

EQU

Agent Time

Figure 4: Example of a quantifier in a DRG for the sentence Everyone’s eating.

There are more intricacies to discuss regarding SBN and DRGs. A lot of these
are covered in Chapter 4 when we describe how our approach works. The last im-
portant aspect we cover here is encoding multiple sentences in the same DRG. DRSs
are not restricted to a single sentence, unlike a lot of other meaning representation
formats. We can simply introduce another box next to a previous box and indicate
how they relate to each other. In a DRG, this works exactly the same and since the
graph is directed, we know the ordering of the sentences as well. Figure 5 shows
what this looks like. There are several box-to-box edge labels that can be used to
connect multiple DRGs. We go into more detail regarding these in Chapter 4.
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person.n.01 time.n.08

right.a.05

CONTINUATION

hearer

EQU

now

EQU

AttributeOf Time

person.n.01 time.n.08

go.v.01

taxi.n.01

speaker

EQU

now

TSU

Theme TimeInstrument

Figure 5: Example of multiple sentences in a DRG for You’re right. I’ll go by taxi.

2.2 Universal Dependencies
To create a semantic meaning representation, there are several options to choose
from when representing the input natural language expression. There are systems
that work directly with the surface form (i.e., the raw text itself), others use a syntactic
parse or additional linguistic representations and there are systems that combine
multiple formats. We go into more detail regarding specific semantic parsers in
Section 2.4.

The current project uses a rich syntactic parse from the Universal Dependencies
(UD, de Marneffe et al. 2021) project2. This framework provides tools to consistently
annotate parts of speech, morphological features and syntactic dependencies, across
different human languages. At the time of writing, it has treebanks available for
more than 100 languages.

A UD parse can provide a lot of information. We discuss what our approach uses
in detail in Chapter 4. Figure 6a shows how UD parses are commonly visualized
and Figure 6b shows how we can format this differently to more resemble our DRG
visualizations. This is purely a stylistic choice and we use the latter from now on.
Let us take a look at three core components of a UD parse: the lemma and Universal
Part of Speech (UPOS) tag per token, as well as the dependency relations between
tokens.

With these components, we can already derive some basic semantic information
for the example in Figure 6. We know which token is the subject (nsubj) of the
sentence and we know that that token is a proper noun (PROPN). This means we can
indicate that there is an entity with a Name role, with the token as its name. We know
NOUNs connected by a compound can probably be combined and represented by a sin-
gle synset. From the Number=Sing morphological feature (not visible in Figure 6),
we can derive that this compound word is singular. We can map the NOUN part
of speech tag to its WordNet equivalent: n. In this case, we can already format the
compound noun as a synset using the lemmas of both nodes: microwave_oven.n.01.
Note that no proper word-sense disambiguation is done and that this is not entirely
language-neutral if we want to target WordNet for our synsets, which are predom-
inantly in English. However, these cases illustrate how we can combine several
features to reach our target representation.

Some more complex constructions require looking at language-specific features,
such as tokens or lemmas. Here, we would have to look at lemmas to detect the
negation for instance. We discuss this in more detail in Section 2.7.

2 https://universaldependencies.org/

https://universaldependencies.org/
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Tom does not have a microwave oven .
Tom do not have a microwave oven .

PROPN AUX PART VERB DET NOUN NOUN PUNCT

nsubj

aux

advmod

root

det

compound

obj

punct

(a) Common visualization style for a UD parse.

ROOT

have
have
VERB

root

Tom
Tom

PROPN

does
do
AUX

n't
not
PART

nsubj aux advmod

oven
oven
NOUN

obj

.

.
PUNCT

punct

a
a

DET

microwave
microwave
NOUN

det compound

(b) UD visualization style used in this thesis.

Figure 6: UD parse visualizations for the sentence Tom does not have a microwave oven.

What we have examined so far is all based on Basic Universal Dependencies.
These parses already contain a lot of information, but some more complicated con-
structions cannot be fully expressed with Basic UD. For these constructions En-
hanced Universal Dependencies3 exist (Schuster and Manning, 2016). A lot more can
be represented with these, also features that can be helpful in semantic parsing
(Findlay and Haug, 2021). A simple illustration of how this could be useful is with
the addition of Conjoined Modifiers. Take the sentence A long and old book for instance.
In basic UD, the only amod (adjectival modifier) edge we get is from book to long. In
Enhanced UD, we also get an amod edge from book to old. This could be very use-
ful, particularly in the context of our graph transformation approach, where more
information generally results in simpler rules. This is because less matching across
multiple nodes or edges is (likely) needed to achieve the same match.

There are more Enhanced UD features that can be useful in semantic parsing.
However, Enhanced UD is not as readily available as Basic UD. The performance of
Enhanced UD parsers is also not as high as their Basic UD counterparts. For these
reasons, we opted to use Basic UD for the current project at the moment. When we
mention ‘UD’ throughout this report, we are thus referring to Basic UD.

2.3 graphs in semantic parsing
A UD parse is a tree4, however, this terminology can be confusing since it can refer
to different concepts in the context of linguistics, data structures or graph theory.
All trees are a type of graph in the context of the current project and this particular

3 https://universaldependencies.org/u/overview/enhanced-syntax.html
4 Note that an Enhanced UD parse is not necessarily a tree, it is instead always referred to as a graph as it

can have multiple incoming and outgoing edges per node and even cycles.

https://universaldependencies.org/u/overview/enhanced-syntax.html
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UD tree is directed. Therefore, we refer to a UD parse as a graph from now on, in
particular a Directed Acyclic Graph (DAG). Keep in mind that the documentation and
papers surrounding UD parsers likely refer to the parses as trees.

Using graph structures for meaning representations is no new concept. We
have already seen DRGs for DRSs (Abzianidze et al., 2020; Oepen et al., 2020; Bos,
2021). Other prominent representations include the Abstract Meaning Represen-
tation (AMR, Banarescu et al. 2013), Universal Conceptual Cognitive Annotation
(UCCA, Abend and Rappoport 2013) and the Alexa Meaning Representation Lan-
guage (Kollar et al., 2018).

Using graphs in meaning representations is appealing for several reasons. For
the Alexa MR Language, a graph directly models the downstream application.
Namely, a control flow graph of sorts, with properties, roles and actions that can
be queried. The motivation for AMR to use graphs is that they are “easy for people
to read and easy for programs to traverse”. UCCA lists the ability to compactly repre-
sent a graph as a positive quality, which makes manually annotating sentences a lot
easier.

Another reason for using graphs is the abundance of high-quality tooling that
is available to work with them. We discuss the tooling used in our approach in
detail in Chapter 4. Here, we give a brief overview of one of the more notable ones:
GREW5. This toolkit, developed by Guillaume (2021), can match and transform any
graph-like structure, but is specifically designed to deal with graphs and trees used
in NLP. This includes UD dependency parses, other syntactic representations6, as
well as semantic meaning representations, such as AMR.

The GREW graph transformation framework (referred to as graph rewriting by
GREW) is quite powerful and expressive. It has been used to achieve state-of-the-art
results in transforming Basic UD to Enhanced UD for certain languages (Guillaume
and Perrier, 2021). It has also seen usage in translating syntactic annotation formats
from one to the other (Gerdes et al., 2019). An early version of the framework was
also used in an experimental study to create a syntax-semantics interface using de-
pendency trees. Specifically to convert Paris7 TreeBank dependencies to Dependency
Minimal Recursion Semantics (Bonfante et al., 2011).

As mentioned, the current project targets DRGs. We use GREW to perform the
majority of structural changes to a UD graph, as well as for some node and edge
labeling. Chapter 4 covers the details regarding the entire graph transformation
process.

2.4 UD in semantic parsing
There have been attempts at deriving semantic meaning representations from UD
directly. In addition, there are semantic parsers that leverage UD to add additional
features to a given input sequence. We discuss some prominent projects in this
section.

2.4.1 UD to logical forms

The goals of this thesis are similar to those of DepLambda (Reddy et al., 2016) and
UDepLambda (Reddy et al., 2017). These systems map UD to logical forms. We focus
on the latter since it is a language-neutral continuation of the former. The mapping
from UD to logical forms is done in four steps:

5 https://grew.fr/
6 GREW specifically mentions Surface Syntactic Universal Dependencies and Deep-sequoia as examples.

https://grew.fr/
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1. Enhancement: First, a subset of features from Enhanced UD are added to a
given UD dependency tree. In particular long distance dependencies, types of coor-
dination and refined question words. Reddy et al. note that these enhancements
are particularly useful for the downstream task of question answering.

2. Binarization: The UD parse gets transformed into a binarized tree that en-
codes the order of the semantic composition. This step also adds a compo-
sition hierarchy to encode the modifiers to each head. In other words, this
enforces the composition and direction of the edges in the binarized tree.

3. Substitution: Words get substituted by typed λ-expressions that encode their
lexical semantics and dependency labels. These expressions also indicate
whether to copy, invert or merge given λ-expression to compose predicate-
argument structures.

4. Composition: Lastly, β-reduction is applied to all λ-expression to get the final,
reduced and normalized logical form.

While similar in spirit, the main difference between UDepLambda and our approach is
that we do not have to deal with complicated operations involving logical variables.
Our target representation (SBN) is free of variables and thus allows us to work
with the UD tree directly, instead of needing several intermediate representations.
Interestingly, Reddy et al. mention the dataset we use for this project (the Parallel
Meaning Bank) explicitly for possible future work:

“(. . . ) we view UDepLambda as a first step towards learning rules for con-
verting UD to richer semantic representations such as PropBank, AMR, or the
Parallel Meaning Bank (. . . ) ”

An important issue to consider is that we cannot compare UDepLambda and our
approach directly. First, because it targets a different meaning representation, and
second because Reddy et al. chose to evaluate their system on a downstream task
directly. They map their final logical forms to Freebase graphs and test those on
two question answering benchmark datasets.

Our evaluation is considerably different since we have a gold standard meaning
representation available to compare system output with directly. We discuss how
we do our evaluation in Section 3.3, but we do want to stress again that this is very
different from the evaluation of UDepLambda.

2.4.2 UD for additional features

Another more common approach to incorporate UD in semantic parsing, is to add
parts from a UD parse as additional input features for a model. This is often used
for sequence-to-sequence models. Dozat and Manning (2018), for instance, use
UD in semantic dependency parsing. This is not the same as semantic parsing
in the current project. Instead of creating a full meaning representation, semantic
dependency parsing tries to predict edges between all words of a given sentence
and assign semantic labels to those. The input sentence stays intact for this task.
Instead of labeling an edge with a thematic role, it would instead be labeled with
what arguments belong to a given verb for instance. Dozat and Manning take a
word and POS embedding, concatenate these and feed them to two modules: one to
predict if an edge should be added between two words (nodes) and one to predict
the label that best describes that edge. They found that adding the UD features
improves performance considerably, compared to not including it.

Xu et al. (2018) try something similar as Reddy et al. (2017), in that they try to
convert a dependency parse to logical forms. They implement this with a graph-
to-sequence model, instead of the rule-based approach from Reddy et al. (2017). In
addition to dependency features, they also encode word order features, as well as
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constituency features into a single graph that is fed to the network. No details are
given on how these syntactic features are obtained; not in their paper and not in
the repository for their system. We assume that at least the dependency features
are obtained from UD since they explicitly mention Reddy et al. (2016, 2017). They
evaluate their system on a dataset with gold standard logical forms. They show that
adding these syntactic features improves the performance of their model in creating
these representations.

Finally, we outline work done by Yang et al. from 2021 that comes quite close
to how we intend to use UD. They train a variety of neural sequence-to-sequence
models that take a natural language expression as input and produce a DRS (as
used in the PMB) as output. Their main goal is to find out if a model trained
on English data can be used for other languages. Or, in more specific terms, they
want to see how a pre-trained multi-lingual language model performs on zero-shot
cross-lingual transfer learning for DRS parsing. They experimented with adding ad-
ditional syntactic input features, specifically UPOS tags and dependency relations,
both from a UD parse. They used the PMB as their dataset7 and found that adding
this information was surprisingly effective. Or in their words:

“(adding UD features), despite its frustrating simplicity, leads to surprisingly
strong zero-shot cross-lingual semantic parsers (. . . )”

They used a different scoring method compared to ours, namely Counter (van No-
ord et al., 2018). We go into more detail regarding our evaluation in Section 3.3.
Their system also targets the clause DRS notation instead of SBN. The indication
that language-neutral syntactic information from UD helps in semantic parsing is
a promising sign though. Despite that our graph transformation approach is quite
different from their approach.

2.5 DRS parsing
Within semantic parsing, we can distinguish different parsers by the methods they
employ, but also by the meaning representation they target. DRSs are the target in
the current project, as mentioned. One of the first semantic parsers that focused on
DRSs is Boxer (Bos, 2008, 2015). This parser has seen many iterations. To build a
meaning representation, Boxer starts with a Combinatorial Categorical Grammar
(CCG, Steedman 2001) syntactic parse. Using λ-calculus, it constructs DRSs in
a compositional manner. It also applies various tools and methods to construct
and derive lexical and logical features, such as thematic role labeling and adding
tense. Boxer is used in the PMB to generate and bootstrap meaning representations
(Abzianidze et al., 2017). In recent work regarding DRS parsing, Boxer has still
shown competitive performance (van Noord et al., 2020).

Recent efforts in DRS parsing have mainly focused on using neural methods,
including the previously mentioned work by Yang et al. (2021). The methods these
neural approaches use range from structural (Fancellu et al., 2019; Evang, 2019)
to sequence-to-sequence (Liu et al., 2019; van Noord et al., 2018, 2020). Current
state-of-the-art performance for DRS parsing is achieved by the latter. We discuss
two neural DRS systems, a structural graph prediction method from Fancellu et al.
(2019) and the state-of-the-art sequence-to-sequence method from van Noord et al.
(2020).

Fancellu et al. (2019) target DRSs expressed in a graph format (DRGs). The se-
mantic parser they built is based on a sequence-to-graph encoder-decoder model.
Specifically, they define a restricted DAG grammar and use it in a similar way as
Recurrent Neural Network Grammars have been used. Their model learns actions
from training data encoded in this grammar. Interestingly, they illustrate the inner

7 Note that they used version 2.1.0 and 3.0.0, whereas the current project uses version 4.0.0.
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workings of this grammar using the Penman notation (Kasper, 1989), which hap-
pens to play an important role in the current project, as we will outline in Section 3.3.
One of the primary reasons to use a grammar, is to greatly reduce ill-formed output
when compared to a full sequence-to-sequence model. They compared their system
to two sequence-to-sequence models from van Noord et al. (2018), one trained on
just gold data and one on both gold and silver data. The current project uses simi-
lar comparison systems, which we discuss in Section 4.7. Chapter 3 explains what
these gold and silver datasets refer to. This paper uses an older version of the PMB
compared to the current project: 2.1.0 versus 4.0.0.

Fancellu et al. show that, indeed, the percentage of ill-formed output is much
less compared to the sequence-to-sequence models. They also outperformed the
comparison model trained on just gold data. However, this was not the case for the
model trained on both gold and silver data. This was partially because the silver
data often was not well-formed according to their grammar. Curiously, Fancellu
et al. also experimented with embeddings of UD information to use as additional
input features. They used lemmas, UPOS tags and dependency labels, obtained
from the, then state-of-the-art, UD parser UDPipe (Straka and Straková, 2017). Their
ablation results show that adding all these features improves performance slightly.
They also tried their model on the other languages in the PMB, namely, Italian,
Dutch and German, and found that they all performed worse than English. This was
mainly due to the absence of gold data for these languages in the PMB release they
used. Similar to Yang et al. (2021), we cannot compare their results directly to the
current project since Fancellu et al. used another version of the PMB. Additionally,
they also used Counter, which is different from our evaluation method, as we will
discuss in Section 3.3.

Fancellu et al. compared their approach to a system from a paper by van Noord
et al. from 2018. In 2020, van Noord et al. developed another sequence-to-sequence
semantic parser. In developing this parser, the authors experimented with a range
of pre-trained language models. They found that a BERT model (Devlin et al., 2019),
combined with character-level features, surprisingly outperformed much larger lan-
guage models. They also experimented with adding additional linguistic features
and found that these did not contribute much if anything. These features did not
come from UD, but instead from parses already present in the PMB. Their final
model outperformed the model we discussed from Fancellu et al. (2019), as well as
the, at the time, state-of-the-art model from Liu et al. (2019). Note again that all
these models targeted the clause notation for DRSs.

2.6 from UD to DRSs
The final area of related work regarding semantic parsers we discuss lies closest
to the current project. Specifically, generating DRSs from UD directly. Little work
has been done in this area. The previously mentioned work from Yang et al. (2021)
resulted in a fully-fledged semantic parser that employs UD as additional features,
but it is not done purely from UD.

The main work in this area is from Gotham and Haug (2018). They provide a
thorough analysis of deriving DRSs from UD using techniques from Lexical Func-
tional Grammars combined with GLUE semantics. Their approach is somewhat
similar to the approach from Reddy et al. (2017). They substitute parts of the UD
tree with various logical expressions until they can compose and finally reduce
these expressions into the target meaning representation. The primary difference in
their approaches is that Gotham and Haug do not have to binarize the UD tree first
to start substituting logical expressions. While their work is thorough and provides
extensive proofs, it is not a fully-fledged semantic parser. In their words:
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“(. . . ) the work described in this paper constitutes a proof of concept tested on
carefully crafted examples (. . . ). We have achieved some encouraging results,
however we are very far from something practically useful (. . . )”

The approach and method of the current project are quite different. For one, our
graph transformation method is a lot less formally established and is more focused
on actual data. This, of course, presents several advantages and disadvantages. The
main advantage of our approach is that we can use some “linguistically intuitive”
and data-driven techniques to formulate and improve our graph transformation
and graph labeling methods. This ties into another goal of this thesis, to get a
basic system working first and foremost and improve it later. This is almost the
opposite of the formal and rigorous method Gotham and Haug apply. Exactly this
is also the disadvantage of our approach, there is no formal proof underpinning its
development or choices.

If we take into account the broad range of semantic parsers we have discussed
so far, we can see a spectrum emerge in terms of explainability, transparency and
accountability. The state-of-the-art neural parsers do not employ any formal proof
or transparency whatsoever. Our approach lies somewhere in the middle of this
spectrum, it is fully transparent and explainable but it does not have any formal
proof for its choices. At the other side of this spectrum lies the formal rigor of
UDepLambda by Reddy et al. and the work done by Gotham and Haug.

2.7 negation in semantic parsing
A final important aspect of semantic parsing we want to discuss is negation. Nega-
tion is crucial in semantics as it models truth values, which are fundamental to
any sort of reasoning we want to do with a given meaning representation. Within
computational semantics, an entire research area is dedicated to detecting nega-
tion, as well as assigning scope to negation (Morante and Blanco, 2012). The previ-
ously discussed UDepLambda even has an entire extension dedicated to this, called
¬UDepLambda (Fancellu et al., 2017).

Naturally, in DRSs, negation is also an important and complex phenomenon.
Work done by Basile et al. from 2012 specifically relates to negation detection and
assigning negation scope in DRSs. To detect negation, they look at specific tokens,
called negation cues. Some easy examples for English are not or none. In addition,
as we have seen, quantifiers are also modeled using negation in this context. These
cues are detected in the same way, so every or all for instance for English.

To assign scope once a cue has been found, Basile et al. convert DRSs to a type
of DRG. Note that this type of DRG is not the same as we use in the current project.
They traverse the DRG and introduce new boxes once a cue has been detected. All
‘remaining’ tokens after a cue get assigned to a new box. Some other methods and
post-processing steps are applied as well, but this is the main idea.

For our approach, we aim to detect negation and quantifier cues and introduce
new boxes. We want to do this for multiple languages, in a similar way as Basile
et al., by looking at tokens (lemmas). However, we chose to leave out assigning
scope to these cues for the time being. The modular structure of our approach does
make it feasible to easily add this in the future.



3 DATA A N D M AT E R I A L

In this chapter, we introduce the dataset we use in the project and some imperfec-
tions regarding this dataset. We show what the input data for our approach looks
like. Lastly, we outline the method we use for evaluating Discourse Representation
Graphs.

3.1 the parallel meaning bank
The dataset we use for our approach is part of the Parallel Meaning Bank project1

(PMB, Abzianidze et al. 2017). This project is a continuation of the Groningen Mean-
ing Bank project (GMB, Bos et al. 2017). The aim of the PMB is to provide a large
and high-quality corpus of annotated sentences. It is comprised of a multi-layered,
semi-automatic annotation system as well as several datasets that are built using
this system. It is ultimately used to create DRSs, but some intermediate annotation
and parsing results can be used on their own as well. The seven annotation layers,
adapted from Abzianidze et al. (2020), are:

• Tokenisation - Indicate sentence boundaries and word tokens;

• Symbolisation - Assign a non-logical symbol to a word or multi-word token;

• Word-sense disambiguation - Assign concepts to symbols using WordNet
senses;

• Co-reference resolution - Mark antecedents for anaphoric expressions;

• Thematic role labeling - Annotate relations between entities using VerbNet
roles and comparison operators;

• Syntactic analysis - Provide lexical categories and build a syntactic structure
for the sentence, based on Combinatorial Categorical Grammar;

• Semantic tagging - Assign a semantic type to a word token.

The PMB gets the Parallel part of its name because a large set of its documents
are parallel translations of each other in multiple languages. Once one of those
languages gets annotated, it is possible to (partially) project the annotations to other
languages as well. The final DRSs aim to be as language-neutral as possible. The
current project specifically uses version 4.0.0 of the PMB2.

3.1.1 Dataset characteristics

Table 2 shows detailed information regarding the PMB release we use for the current
project. Gold data refers to data that is fully checked and corrected by humans. Silver
data is partially checked, some of the annotation layers are unchecked for example.
Lastly, bronze data refers to unchecked and automatically generated data. Note that
our system only uses gold data. Some experiments were done with silver data as
well. The bronze set was only used alongside the other sets to develop and test the
SBN parser for our system. Bronze is included here for completeness’ sake. Later
on, we outline some interesting phenomena where some examples from the bronze
set are used as well.

1 https://pmb.let.rug.nl/
2 Which can be downloaded from here: https://pmb.let.rug.nl/data.php.
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Table 2: Counts per language and data layer for the PMB 4.0.0 release. Multi-sent refers to
documents with > 1 sentence in them (based on *.iob.tok files). Tokens / doc shows
the average tokens per document (based on *.off.tok files).

# Docs # Multi-sent # Tokens Tokens / doc

English
Gold 10,715 94 70,307 6.6
Silver 127,303 6,282 1,441,919 11.3
Bronze 156,286 5,391 1,463,721 9.4

Dutch
Gold 1,467 1 9,025 6.2
Silver 1,440 88 13,843 9.6
Bronze 28,265 2,139 288,975 10.2

Italian
Gold 1,686 0 9,205 5.5
Silver 4,088 145 33,314 8.2
Bronze 100,963 3,197 817,436 8.1

German
Gold 2,844 3 16,571 5.8
Silver 6,355 260 60,404 9.5
Bronze 151,493 5,164 1,447,415 9.6

As we can see in Table 2, the PMB primarily consists of short texts, the majority
of which are just single sentences. Each document in the PMB has several files
associated with it: DRSs in various formats, results from annotation layers and
metadata. Not all of these are used in the current project and our system also adds
some additional items to this file structure. Two files are essential: the raw sentence
and the DRS in SBN format. We discuss the relevance of these in more detail in
Section 3.2 and 3.3.

The gold data per language is split up into three splits: train, dev(elopment)
and test. For historical reasons, English also includes a fourth split: eval(ulation).
Silver and bronze data are assumed to be used as possible additional training data.
Table 3 shows the counts for the gold data splits per language.

Table 3: Counts per language and data split for the gold data in the PMB 4.0.0 release.

Train Dev Test Eval

English 7,668 1,169 1,048 830

Dutch 539 437 491 -
Italian 685 540 461 -
German 1,738 559 547 -

We can see that there is much less data available for Dutch, Italian and German,
compared to English. This is something we will come back to multiple times in this
thesis.

3.1.2 Dataset imperfections

While developing the system, we encountered some imperfections in the data, which
we will discuss briefly. The main imperfections are: cyclic SBN graphs, empty SBN
documents, whitespace in WordNet ids (synsets) and possibly ambiguous indices.

An important assumption for the graph transformation process, is that both the
UD and SBN graphs are Directed Acyclic Graphs. The primary reason for this has
to do with how the graphs are evaluated. We go into more detail about this in
Section 3.3. There are a number of cyclic graphs in the SBN format in the PMB.
Figure 7 shows an example of such a graph.

From the manually inspected sample of cyclic graphs, all of them are similar
in nature to Figure 7. This might be due to a conversion error with possessive
constructions.
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child.n.01

run.v.01

time.n.08

male.n.02

person.n.01

mother.n.01

Role

ThemeTime

now
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EQU
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Of

child.n.01

run.v.01

time.n.08

male.n.02
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mother.n.01Theme
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now
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Figure 7: Graphs for the sentence The child ran to his mother, with the cyclic SBN graph on
the left as in the PMB 4.0.0. Right is the fixed and updated version in the PMB at
the time of writing. PMB id: en/gold/p67/d1486.

Another imperfection we encountered while parsing SBN files was whitespace
in synset ids. All cases of this had the utf-8 whitespace character U+00a0 in them.

Table 4 shows an overview of all imperfections. Most of these have already been
fixed in the PMB and these fixes will be included in a future release. Note however
that, at the time of writing, this has not been released. We are using the dataset
with these imperfections.

Table 4: Imperfections in PMB release 4.0.0.

Cyclic SBN Empty SBN Whitespace in synsets

English
Gold 35 (0.3%) 4 (0.0%) 0 (0.0%)
Silver 1,527 (1.2%) 1 (0.0%) 2 (0.0%)
Bronze 1,044 (0.7%) 0 (0.0%) 1 (0.0%)

Dutch
Gold 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silver 5 (0.3%) 0 (0.0%) 0 (0.0%)
Bronze 173 (0.6%) 0 (0.0%) 23 (0.1%)

Italian
Gold 0 (0.0%) 0 (0.0%) 0 (0.0%)
Silver 17 (0.4%) 0 (0.0%) 0 (0.0%)
Bronze 418 (0.4%) 0 (0.0%) 3 (0.0%)

German
Gold 2 (0.1%) 0 (0.0%) 0 (0.0%)
Silver 80 (1.3%) 0 (0.0%) 3 (0.0%)
Bronze 1,129 (0.7%) 0 (0.0%) 19 (0.0%)

We can see that there are very few cases of these imperfections across languages
and data splits. Since this number is so low and since these imperfections will be
fixed, we did not implement special procedures to deal with them. We ignore these
cases in our evaluation and in the mapping extraction, more on this in Section 4.5.
It is important to mention that the counts in Table 3 of usable documents is ever so
slightly lower due to these imperfections.

Note that the training data for the neural comparison system did not filter out
these cases. It used all English gold data for one system and all English gold and
silver data for the other. This was partially due to miscommunication and partially
due to some errors that had not been found yet at the time of training these systems.
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Again, there are very few cases, so we assume this will not have any noticeable
effect, but for the sake of transparency, it is important to mention it here.

The imperfections listed in Table 4 are rather harmless and can easily be detected
and ignored. This is not true for a more subtle inconsistency regarding the SBN
specification itself. Recall that SBN is modeled around indices, which remove the
need for explicit variables. These indices are an integer prefixed with either a +

or −, surrounded by whitespace (note that 0 is a valid index, which is written as
+0 in the PMB). SBN also has constants, which are essentially the leaf nodes of
the graph. These can be dates, names and several special tokens (now for example).
Numerical values are also constants, with no special enclosing symbols (names have
’ " ’ surrounding them for instance). Now let’s consider the example in Figure 8.

The mercury plunged to minus 7 overnight.

mercury.n.04
plunge.v.01 Theme -1 Time +1

Destination +2
Manner +3

time.n.08 TPR now
entity.n.01 EQU -7
overnight.a.01

Figure 8: Example of possibly ambiguous index, PMB id: en/silver/p15/d3131.

In the PMB, “minus 7” gets normalized to “−7”. This is a constant that is a
signed integer, which is exactly how we would represent an index in SBN. In this
particular case, we can detect that this is indeed a constant since the index points
at an invalid synset node; there is no node −7 synset nodes back. However, if it
had been “−1” instead, we would have no way of knowing if it is a constant or an
index. This makes it quite difficult to find these examples from just the data alone.
A simple solution to this problem would be to always quote constants similarly to
how multi-word expressions are encoded.

In the entire PMB 4.0.0 release only two such cases can be found: the previous
example and a bronze document for German (de/bronze/p41/d2482), which is an
erroneous parse anyway. We did not find possibly ambiguous constants that point
at a correct synset. These are very hard to find and might not even be present in
the dataset.

3.2 UD representation
The previously mentioned raw file for a document in the PMB simply contains
the entire sentence (or multiple sentences) without any processing done to it. In
other words, the raw string in plain text format. We need these to create the UD
parses from where the rest of the process starts. There are several pre-tokenized
formats per document available in the PMB. While UD parsers generally accept
pre-tokenized input, we chose to use the raw text instead. This allows us to bet-
ter evaluate different UD parsers since they are entirely self-contained this way. It
also makes our system more modular. Different UD parsers might require other
pre-processing methods for pre-tokenized input, which introduces unneeded com-
plexity. The UD parses are stored in the CONLL file format3 per document. Table 5

shows what information might be present in a UD parse in CONLL format. We
store a parse per document, per UD parser. Which parsers we use and how the
CONLL files are processed is discussed in Chapter 4.

3 Or variations such as CONLL-X or CONLL-U.
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Table 5: Example of information present in a CONLL file from a UD parse for the sentence
Tracy lost her glasses. Underlined headers are required and always available. PMB id:
en/gold/p04/d1646.

FORM LEMMA UPOS XPOS FEATS HEAD DEPREL DEPS MISC

Tracy Tracy PROPN NNP Number=Sing 2 nsubj _ _

lost lose VERB VBD Mood=Ind
Tense=Past
VerbForm=Fin

0 root _ _

her she PRON PRP$ Gender=Fem
Number=Sing
Person=3

Poss=Yes Pron-
Type=Prs

4 nmod:poss _ _

glasses glasses NOUN NNS Number=Plur 2 obj _ _

. . PUNCT . _ 2 punct _ _

3.3 evaluating Discourse Representation Graphs
Apart from the raw file, another essential file per document is the DRS in SBN
format. Each document in the PMB has one SBN file associated with it. We use this
file as the gold standard4. We compare this file with output from both our graph
transformation system and our neural comparison system.

Since it is a relatively new format, there is not an official evaluation method yet
that operates on SBN directly. To evaluate semantic parses, two main options exist:
SMATCH (Cai and Knight, 2013) and Counter (van Noord et al., 2018). The latter
is designed with DRSs in mind, but specifically for the clausal notation of DRSs.
This notation does not use a graph-like structure, it instead works with clauses that
can have three or four components. Counter is based on SMATCH and directly
addresses this issue of four component clauses. SMATCH is originally created to
evaluate AMR. A valid AMR parse creates a DAG. SMATCH flattens a reference
(gold) graph and the target graph into triples and calculates the overlap between
these, resulting in precision, recall and an F1-score as output metrics. A major
motivation for the SBN format is that it creates DAGs, which opens up a lot of
options and flexibility in terms of processing this format. This is also mentioned in
the paper that introduces SBN (Bos, 2021):

“SBN shares characteristics with the Penman notation (Kasper, 1989), and for-
malisms based on that such as Abstract Meaning Representation (Banarescu
et al., 2013) (. . . )”

Penman (Kasper, 1989) is a notation format to represent DAGs. Since SBN also
creates DAGs, we can convert it to the Penman notation. By doing this, we can
leverage SMATCH for evaluation. Figure 9 shows the same DRG in the two formats
for the same sentence. Note that a single slash “/” in Penman is shorthand for the
:instance relation.

In this example, we can clearly see the absence of explicit variables in SBN. In the
Penman notation, variables can have any non-whitespace symbol, as long as these
are unique when declared. The relation :member is not part of SBN, connections
from nodes to boxes are implicit there. In other words, all synset nodes are always
connected to a box and the initial box (b0 in Penman) is implicit since it is always
present. The box label is given to all boxes since a particular box can be seen as an
instance of the type or concept ‘box’. As we outlined before, the meaning these boxes
convey is expressed by the edge they might have with another box. Their connection

4 Gold as in ground truth, not as in the data split itself.
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plastic.n.01
chair.n.01 MadeOf -1
time.n.08 EQU now
cheap.a.01 AttributeOf -2 Time -1

(b0 / box
:member (s0 / plastic.n.01)
:member (s1 / chair.n.01
:MadeOf s0)

:member (s2 / time.n.08
:EQU now)

:member (s3 / cheap.a.01
:AttributeOf s1
:Time s2))

Figure 9: SBN notation (left) and Penman notation (right) for the DRG of the sentence That
plastic chair is cheap.

to synset nodes also conveys meaning, specifically to model scope. Figure 10 shows
how scope with multiple boxes is represented in Penman.

NEGATION -1
person.n.01

NEGATION -1
time.n.08 EQU now
eat.v.02 Agent -2 Time -1

(b0 / box
:NEGATION (b1 / box
:member (s0 / person.n.01)
:NEGATION (b2 / box
:member (s1 / time.n.08

:EQU now)
:member (s2 / eat.v.02

:Agent s0
:Time s1))))

Figure 10: SBN notation (left) and Penman notation (right) for a DRG with multiple boxes
(scope) of the sentence Everyone’s eating.

This Penman notation from Figure 10 can already be parsed and scored by
SMATCH, even though it is not AMR. However, there are several improvements
to be made. The first improvement to our notation is writing it in such a way that
SMATCH can invert roles that support it. Consider the following triple from the
example in Figure 9:

(s3 AttributeOf s1) ≡ (s1 Attribute s3)

Cheap is an attribute of the chair. ≡ The chair has the attribute cheap.

SMATCH can invert these logically equivalent triples when the relation (role) ends
with “*-of”. This is the AMR way of writing these types of relations. This process
is called role inversion.

Another improvement we can make to our notation is splitting up the Word-
Net synsets. If the synsets are fully intact, as in the example, we evaluate three
components simultaneously: the lemma, the WordNet part of speech tag and the
sense number. The sense number in particular targets the task of word-sense dis-
ambiguation, which might not be desirable. For this reason, we include options to
filter out certain synset id components when exporting a graph to the Penman nota-
tion. Evaluating exports with and without a sense number was particularly useful
in developing the mappings for the sense numbers. We discuss this in Section 4.5.

Figure 11 shows part of our previous example in the improved format. The new
synset label serves the same purpose as the box label we discussed.

A final point of improvement is consistent quoting of values. In SBN, several
quoting methods are used to indicate different types of constants and tokens. This
is, arguably, not that important for the final DRG we want to evaluate. As long
as the SBN gets parsed properly to build this DRG. The final evaluation should
not target notation-specific conventions, it should evaluate the content of a DRG.
For this reason, we quote all constants we insert into the Penman notation in a
consistent manner. Note that a constant in the Penman notation is not the same as
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(b0 / box
(...)
:member (s3 / cheap.a.01
:AttributeOf s1
:Time s2))

(b0 / box
(...)
:member (s3 / synset
:lemma cheap
:pos a
:sense 01
:Attribute-of s1
:Time s2))

Figure 11: Revised notation with -of and split up synset components. The example notation
from before is on the left and the improved notation on the right.

a constant in SBN. In Penman, a constant refers to a non-logical symbol in the last
position of a triple. Figure 12 shows the final triples SMATCH works with. These
triples are compared to those of another graph. Figure 12 also demonstrates the
consistent quoting of constants.

(b0, :instance, "box")
(b0, :member, s0)
(s0, :instance, "synset")
(s0, :lemma, "plastic")
(s0, :pos, "n")
(s0, :sense, "01")
(b0, :member, s1)
(s1, :instance, "synset")
(s1, :lemma, "chair")
(s1, :pos, "n")
(s1, :sense, "01")
(s1, :MadeOf, s0)
(b0, :member, s2)

(s2, :instance, "synset")
(s2, :lemma, "time")
(s2, :pos, "n")
(s2, :sense, "08")
(s2, :EQU, c0)
(c0, :instance, "now")
(b0, :member, s3)
(s3, :instance, "synset")
(s3, :lemma, "cheap")
(s3, :pos, "a")
(s3, :sense, "01")
(s1, :Attribute, s3)
(s3, :Time, s2)

Figure 12: The final triples that SMATCH uses for the DRG of That plastic chair is cheap. Note
that the AttributeOf triple has been inverted and all constants are quoted.

Lastly, we developed two methods to evaluate a given SBN graph: a strict and
a lenient method. This particular option indicates whether an SBN graph should
be considered to be ill-formed based on possibly wrong indices. We discussed this
in more detail in Section 3.1, specifically Figure 8. This does not only pertain to
evaluation, but also the SBN specification itself. We can give a parser the benefit
of the doubt when it outputs SBN with possibly wrong indices and consider these
indices to be constants. Or we can punish it since this is very rare in our dataset.
It does not occur in the gold data of any of the languages. It is arguably more
plausible that the parser made an error and created an ill-formed DRG. An ill-
formed graph, regardless of the reason for it being ill-formed, always gets a score
of 0 for all metrics.

The specific SMATCH implementation we use is provided by mtool5, which
is the official scoring method in both the 2019 and 2020 editions of the Meaning
Representation Parsing (MRP) shared tasks (Oepen et al., 2020).

5 https://github.com/cfmrp/mtool

https://github.com/cfmrp/mtool


4 M E T H O D

In this chapter, we introduce our system: UD-Boxer. First, we give a brief overview
of the internal structure of UD-Boxer. Next, we introduce the UD parsers we use
for our experiments and how UD-Boxer transforms a UD parse into a DRG. We go
through the entire system with a single example sentence. After this example, we
go into more detail regarding the rules and mappings used in UD-Boxer. We briefly
describe the development process and finally introduce our neural comparison sys-
tem.

4.1 system overview
Before going through an example sentence, we briefly want to outline the structure
of UD-Boxer. The system works in three basic steps:

1. Apply structural graph transformations.

2. Substitute syntactic labels with semantic concepts.

3. Connect box nodes.

In addition to the core transformation process, other components deal with parsing,
validating and exporting various formats. A number of different graph formats are
used in the system that serve different purposes. At the core of all these formats lies
a networkx1 (Hagberg et al., 2008) graph that is translated into the different formats
when needed. Figure 13 gives an overview of the graph formats used in UD-Boxer,
specifically for the SBNGraph.

networkx.DiGraph
GraphSpecification

NodeTypes & EdgeTypes

Penman GREW SBN Graphviz

Figure 13: Basic UD-Boxer graph structure overview for the SBNGraph.

To support these translations and to comprehensibly model all functionality sur-
rounding these graphs, a type system describing the nodes and edges is used all
throughout UD-Boxer. These types can be combined with a particular specifica-
tion for a given graph type for easy parsing and validating. The node types of the
SBNGraph are synsets, constants and boxes. The edge types are roles, DRS operators,
box connections and box-to-box connections. These types are needed to make sure a
graph is well-formed. For example, a constant cannot be connected to a box and a
box-to-box edge can only exist between two box nodes.

The specification of a graph describes what these node and edge types look like
and how they should be parsed. These are some examples of the node and edge
characteristics that are included in the SBNGraph specification:

1 https://networkx.org/

22

https://networkx.org/


4.2 off-the-shelf UD parsers 23

• All known roles, operators, box indicators and more are present in the specifi-
cation. These are used in parsing and validating nodes and edges;

• Various regular expressions describe what a constant might look like. Name
constants have double quotes surrounding them, years have single quotes sur-
rounding them and so on;

• Roles that can be inverted are listed in the specification. These are used when
exporting a graph to the Penman notation, but could also be used in parsing
for instance.

UD-Boxer also has a UDGraph, which has its own node and edge types. It also has
a graph specification describing those, specifically for Basic Universal Dependencies.
This specification includes dependency relations, morphological features, POS tags
and more. Additionally, this specification also lists several mappings from UD
features to semantic concepts. We go into more detail regarding these mappings
in Section 4.5. We use this UD specification when parsing CONLL files, resolving
syntactic labels to semantic concepts and when extracting label mappings.

4.2 off-the-shelf UD parsers
To start the process, we need a UD parse of an input sentence. We can get this by
putting our sentence through an ‘off-the-shelf’ UD parser. These types of parsers
all support exporting their parse to the CONLL format, which we have seen. We
have also already seen what information is present in a UD parse in Table 5. This
table actually shows the parse of the example sentence we are using in this chapter:
Tracy lost her glasses2. Figure 14 shows the UD graph visualization of this sentence.
Note that not all information from the UD parse is present in these visualizations.
Optional information, such as morphological features, are left out, but are used in
creating the final DRG — this is discussed later. Most UD features are language-
neutral and one of the main goals of UD-Boxer is to target these features before
targeting language-specific features.

ROOT

lost
lose
VERB

root

Tracy
Tracy
PROPN

nsubj

glasses
glasses
NOUN

obj

.

.
PUNCT

punct

her
she

PRON

nmod-poss

Figure 14: UD graph of the sentence Tracy lost her glasses, created using Stanza.

2 PMB id: en/gold/p04/d1646.
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The UD parser component is modular, so any parser can be inserted, as long as it
is able to produce a CONLL file as output. UD-Boxer integrates two state-of-the-art
neural UD parsers: Stanza3 (Qi et al., 2020) and Trankit4 (Nguyen et al., 2021).

4.3 full transformation example
We have seen how we obtain a UD parse for our example sentence. As discussed
in Section 2.3, we are using the GREW framework to perform structural changes to
the UD graph. In GREW, rules are defined as a pattern combined with one or more
commands and an optional Negative Application Pattern (NAP), called a without block.

Both the pattern and NAP are themselves graphs, where the pattern can match
a subgraph of the input graph, based on certain features. The NAP can filter out
particular occurrences of the first pattern. This is especially useful when transform-
ing a graph and a given rule should be applied only once. The NAP prevents an
infinite loop of applying the pattern.

The commands sequentially describe steps that modify the structure of the graph.
They can also describe changes to attributes of nodes and edges. UD-Boxer starts
by adding a new attribute to all nodes and edges to ‘store’ semantic concepts. We
use a new attribute, instead of overwriting the existing UD features, so we can keep
the UD information intact during the entire process. This attribute is called token5

(tok in visualizations for brevity). This attribute can hold a DRG label, a special
keyword or a constant. For nodes, the initial value for this attribute is the lemma

UD feature. This is done since most nodes will probably be converted to WordNet
synsets in the substitution step. Synsets, as we have seen, are partially made up of
one or more lemmas.

Edges get the special keyword NONE as their initial token value. Ideally, this
should be overwritten with a proper edge label at some point during the transfor-
mation process. If not, the keyword is picked up in the substitution step. There,
UD-Boxer will try to properly assign an edge label. Figure 15 shows the rules for
adding this new node and edge attribute.

The next step is to connect the User role in a possessive construction. This is
done by connecting the target of an nmod:poss edge to the subject node (nsubj).
After we have connected this edge, we can remove the indicator (IND in Figure 16).
Here, the indicator is the pronoun her. In our meaning representation, this relation
is encoded directly into the User edge. Figure 16 shows the result of applying
this rule. Note that the NAP makes sure this only happens once. In all following
examples in this section, we use colors to clarify the process. Green indicates that
components of the graph are newly added and red indicates they are deleted, both
as a result of applying the rule(s).

Note that labeling this edge as User is not ideal. UD is too ambiguous to label
this properly in all cases. If, for instance, the target was her dog instead of her glasses,
the UD parse would be identical in terms of part of speech tags and dependency
relations. However, according to the VerbNet role specifications, this would be an
Owner, not a User role. In developing UD-Boxer, we chose to use a most frequent
approach to these cases. We took the most frequent role or label from the training
data when applying them to certain patterns. We go into more detail regarding this
in Section 4.5.

Our next step is separating the ‘entity’ Tracy and her name. In other words, if
we know we are dealing with a proper noun (PROPN), we need separate nodes to

3 https://stanfordnlp.github.io/stanza/
4 https://github.com/nlp-uoregon/trankit
5 We are aware that ‘token’ is quite a loaded term in NLP. We considered using ‘label’, but this is a

reserved keyword in GREW (https://grew.fr/doc/graph/). ‘Semantic label’ would be a good attribute
name, but that is quite verbose, especially when reading and writing rules. This is why we chose ‘token’.
Additionally, in the context of parsing SBN, nodes and edges (and indices) are individual tokens.

https://stanfordnlp.github.io/stanza/
https://github.com/nlp-uoregon/trankit
https://grew.fr/doc/graph/
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1 rule add_token_nodes {
2 pattern {
3 N [lemma, !token];
4 }
5 commands {
6 N.token = N.lemma;
7 }
8 }
9

10 rule add_token_edges {
11 pattern {
12 E: N -[!token]-> M;
13 }
14 commands {
15 E.token = "NONE";
16 }
17 }

ROOT

lost
lose
VERB

tok=lose

root
tok=NONE

Tracy
Tracy
PROPN

tok=Tracy

nsubj
tok=NONE

glasses
glasses
NOUN

tok=glasses

obj
tok=NONE

.

.
PUNCT
tok=.

punct
tok=NONE

her
she

PRON
tok=she

nmod-poss
tok=NONE

Figure 15: Rules that add a token attribute to nodes and edges.

indicate the entity and the name of this entity. Figure 17 shows what this looks like.
Assigning the proper synset to the entity node is done in the substitution step.

Next, we are going to add a node and edge to indicate temporal information.
The actual resolving of this information is done in the substitution step, which
picks up the special keyword TIMERELATION. One label we can already resolve is
the time node synset since this is overwhelmingly used in the PMB to indicate time
relations. Adding the time node and edge to our graph is shown in Figure 18.

Lastly, we need to discard all nodes and edges that are not semantically relevant.
In this particular sentence, we only need to remove the explicit root and the punc-
tuation mark. Figure 19 shows this transformation. In other sentences, there might
be a lot more nodes and edges that need to be discarded. We discuss such rules,
and more, in Section 4.4.

Once these steps are complete, no more rules can be applied in GREW.

1 rule connect_user {
2 pattern {
3 USER [upos=PROPN|NOUN];
4 * -[1=nsubj]-> USER;
5 REL: ITEM -[1=nmod, 2=poss]-> IND;
6 }
7 without {
8 ITEM -[token="User"]-> USER;
9 }

10 commands {
11 add_edge ITEM -[token="User"]-> USER;
12 del_edge REL;
13 del_node IND;
14 }
15 }

ROOT

lost
lose
VERB

tok=lose

root
tok=NONE

Tracy
Tracy
PROPN

tok=Tracy

nsubj
tok=NONE

glasses
glasses
NOUN

tok=glasses

obj
tok=NONE

.

.
PUNCT
tok=.

punct
tok=NONE

her
she

PRON
tok=she

tok=User nmod-poss
tok=NONE

Figure 16: Rule that connects the User in a possessive construction in the graph.
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1 rule expand_name {
2 pattern {
3 NAME [upos=PROPN];
4 }
5 without {
6 NAME -> *;
7 }
8 commands {
9 add_node CONST;

10 CONST.token = NAME.textform;
11 add_edge NAME -[token="Name"]-> CONST;
12 }
13 }

ROOT

lost
lose
VERB

tok=lose

root
tok=NONE

Tracy
Tracy
PROPN

tok=Tracy

tok=Tracy

tok=Name

nsubj
tok=NONE

glasses
glasses
NOUN

tok=glasses

obj
tok=NONE

.

.
PUNCT
tok=.

punct
tok=NONE

tok=User

Figure 17: Rule that adds a constant node to indicate the name of a PROPN node. It also
adds the corresponding Name edge.

1 rule add_time {
2 pattern {
3 N [];
4 * -[1=root]-> N;
5 }
6 without {
7 N -[token="Time"]-> *;
8 }
9 commands {

10 add_node TS;
11 add_node TC;
12 TS.token = "time.n.08";
13 TC.token = "now";
14 add_edge N -[token="Time"]-> TS;
15 add_edge TS -[token="TIMERELATION"]-> TC;
16 }
17 }

lost
lose
VERB

tok=lose

tok=time.n.08

tok=Time

Tracy
Tracy
PROPN

tok=Tracy

nsubj
tok=NONE

glasses
glasses
NOUN

tok=glasses

obj
tok=NONE

.

.
PUNCT
tok=.

punct
tok=NONE

tok=now

tok=TIMERELATION

ROOT

root
tok=NONE

tok=Tracy

tok=Name

tok=User

Figure 18: Rule that adds a time synset node (TS), a time constant node (TC) and their
corresponding edges.
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1 rule remove_root_punct {
2 pattern {
3 * -[1=root]-> ROOT;
4 E: ROOT -> N;
5 N [upos=PUNCT];
6 }
7 commands {
8 del_edge E;
9 del_node N;

10 }
11 }
12

13 rule remove_explicit_root {
14 pattern {
15 N [];
16 E: N -[1=root]-> T;
17 }
18 commands {
19 del_edge E;
20 del_node N;
21 }
22 }

lost
lose
VERB

tok=lose

tok=time.n.08

tok=Time

Tracy
Tracy
PROPN

tok=Tracy

nsubj
tok=NONE

glasses
glasses
NOUN

tok=glasses

obj
tok=NONE

.

.
PUNCT
tok=.

punct
tok=NONE

tok=now

tok=TIMERELATION

ROOT

root
tok=NONE

tok=Tracy

tok=Name

tok=User

Figure 19: Rules that discard the explicit root and main punctuation mark nodes and edges.

Once the transformations in the GREW step are complete, UD-Boxer converts
the output graph to an SBNGraph using its graph specification. This makes sure
node and edge types are correct and that the output graph from GREW is well-
formed. During this step, syntactic labels and special keywords get resolved to
semantic concepts through various strategies. One key approach of UD-Boxer is
that it always tries to generate a valid meaning representation. This means that, at
various points, if a label cannot be resolved properly with the information given,
UD-Boxer chooses from a set of default or fallback labels. These are also based on
frequencies in the training data.

Let us take a look at our running example again. First, all nodes get resolved.
This is done by checking if the token attribute of a given node matches anything
in the SBNGraph specification. This could be a synset or a new box indicator for
instance. If this yields no results, the graph resolver looks for special keywords that
were introduced in the GREW step. Each keyword is associated with a particular
strategy. At the time of writing there is just one keyword for nodes: GENDER. This
particular strategy tries to look for the Gender6 morphological feature that could be
present in a UD parse for a given node. If present, this feature gets mapped to the
correct synset. If not, a default value will be chosen: person.n.017. Note that some
UD parsers assign multiple values to this feature as in some languages multiple
values can apply. In that case, the first is chosen.

If the previous step does not apply, the next strategy is tried. This is to format
the token as a synset. This only happens if the upos node attribute is present. If this
happens to be a proper noun (PROPN), the previous gender resolving strategy is used
here as well. Otherwise, UD-Boxer maps the UD UPOS value to its approximate
WordNet POS equivalent. This is not ideal since UPOS has eighteen POS tags and
WordNet only four. Nonetheless, this mapping performed very well. As we have
seen, the token attribute initially gets assigned the lemma UD feature. Compound
words get combined: token attributes are concatenated with an underscore. This is
the same as how WordNet synsets are formatted. With this combination of a (com-
bined) lemma and WordNet POS tag, UD-Boxer looks for a sense number mapping.
If this does not exist, it tries it again with just the lemma and if that fails it assigns
01 as the default sense number. Lastly, if all this does not apply, UD-Boxer assumes
the node is a constant. Tabel 6 shows what node resolving steps were applied to
our example graph.

6 https://universaldependencies.org/u/feat/Gender.html
7 Note that all results were obtained by using female.n.02 since this was the most common in the training

data. For normal use person.n.01 or the more general entity.n.01 make more sense. The former is the
current default.

https://universaldependencies.org/u/feat/Gender.html
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Table 6: Node resolving for our example sentence. Note that some details are left out.

Input Strategy Type Resulting token

Tracy [upos=PROPN] PROPN gender resolving Synset female.n.02 (default gender)

lose [upos=VERB] Lemma + POS lookup Synset lose.v.01

glasses [upos=NOUN] Lemma + POS lookup Synset glasses.n.01

time.n.08 Specification match Synset time.n.08

now No match Constant now

Tracy No match Constant Tracy

Next, the edge types and tokens get resolved. This process is very similar to the
node resolving. We start again by checking if a given edge token attribute matches
the SBNGraph specification. This can result in a Role or DRS Operator for example.
Next, we look for the keywords TIMERELATION or NONE. To resolve the first, UD-
Boxer tries to collect all Tense8 attributes from all nodes in the graph. This is an
optional morphological feature in a UD parse. If multiple exist, the most common
is picked and mapped to the corresponding temporal DRS relation. If UD-Boxer
encounters NONE, it tries to get the upos attribute from the from and to nodes as well
as the deprel (dependency relation) attribute from the edge. These get combined
and looked up in pre-extracted mappings to find the corresponding type and token.
If this combination is not present in the mappings, the (configurable) default type
and token will be used. Based on training data, this is the Agent role. Tabel 7 shows
what edge resolving steps were applied to our example graph.

Table 7: Edge resolving for our example sentence. Note that some details are left out.

Input Strategy Type Resulting token

TIMERELATION Tense resolving DRS operator TPR

Time Specification match Role Time

NONE [deprel=nsubj] VERB-nsubj-PROPN mapping Role Agent

NONE [deprel=obj] VERB-obj-NOUN mapping Role Theme

User Specification match Role User

Name Specification match Role Name

One task left to do is to introduce the ‘starting box’ in the graph and connect
all synset nodes to it. Newly introduced boxes, that were encountered during the
resolving process, get connected here as well. This is currently done simply by
connecting them to the starting box. There is no support yet for assigning scope to
individual nodes using boxes. This also ties into the box constructions UD-Boxer
currently supports, which are multiple sentences, negation and quantifiers. This is
not ideal and clearly an area of improvement, which we also discuss in Chapter 5.
Figure 20a shows the final resulting graph.

With this resulting graph we can do several things, for instance: extract infor-
mation from it, traverse it or convert it to various formats. We can export it to the
Penman format in order to evaluate it. Let us compare it to the gold DRG for this
sentence. Figure 20b shows a visually cleaned version of our graph and Figure 20c
the gold standard graph for the example sentence.

8 https://universaldependencies.org/u/feat/Tense.html

https://universaldependencies.org/u/feat/Tense.html
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lost
lose
VERB

tok=lose.v.01

tok=time.n.08
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glasses
glasses
NOUN
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(a) Resulting graph from our running example.

lose.v.01

time.n.08

Time

female.n.02

Agent glasses.n.01

Theme

now

TPR

Tracy

Name

User

(b) Cleaned resulting graph.

female.n.02

lose.v.05

time.n.08glasses.n.01

Tracy

Name

Agent

TimeTheme

now

TPRUser

(c) Gold graph.

Figure 20: Resulting DRG after full process and gold DRG for our example sentence Tracy
lost her glasses.

We can see that this particular example went well, the only thing wrong is the
sense number mapping for lose. If we export both graphs to the Penman format
and use SMATCH to compare them, we get the following scores: precision 96.7,
recall 96.7 and F1 96.7. This is, of course, an example that shows how the system
performs with a graph it can deal with rather well. Chapter 5 provides an extensive
error analysis with examples where UD-Boxer falls short.

4.4 graph transformations
Let us take a closer look at the graph transformations UD-Boxer can perform.
We can divide these into three categories: structural, attribute and language-specific.
There is overlap between these, however, for the sake of explaining, we keep this
distinction.

Structural rules change the composition of the graph by adding or removing
nodes or edges. Rules that discard nodes and edges that are not semantically rel-
evant, such as in Figure 19, are an example of this type of rule. A considerable
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number of part of speech tags are generally not semantically relevant in DRSs. The
rule in Figure 21 discards nodes with these particular tags. This rule happened
to not apply to our example sentence. Note that some rules explicitly remove or
overwrite the upos feature after they transformed a given node. This is done to not
accidentally remove them later on with the cleaning rule. This rule is applied as
one of the last, again in order to not remove information another rule might need.

1 rule remove_unwanted_pos {
2 pattern {
3 N [upos=PUNCT|DET|AUX|ADP|PART|CCONJ|SCONJ];
4 }
5 commands {
6 del_node N;
7 }
8 }

Figure 21: Cleaning rule to remove unwanted nodes with particular part of speech tags.

The attribute rules add, change, combine or remove node or edge attributes. An
example is the rule that adds the token attribute, as we have seen. Figure 22 shows
two rules that combine features of two nodes into one. Note that these rules use
an underscore to concatenate tokens in order to be compatible with how WordNet
formats synsets.

1 rule combine_compound_prt {
2 pattern {
3 A [];
4 B [];
5 R: A -[1=compound, 2=prt]-> B;
6 }
7 commands {
8 A.token = A.token + "_" + B.token;
9 % Ensure it does not get cleaned.

10 A.upos = "VERB";
11 del_edge R;
12 del_node B;
13 }
14 }

(a) Rule to combine phrasal verb parti-
cle components, such as burn down or
hang up.

1 rule combine_nouns {
2 pattern {
3 A [upos=NOUN];
4 B [upos=NOUN];
5 % Restriction on ordering.
6 B < A;
7 R: A -[1=compound]-> B;
8 }
9 commands {

10 A.token = B.token + "_" + A.token;
11 del_edge R;
12 del_node B;
13 }
14 }

(b) Rule to combine compound nouns,
such as credit card or microwave oven.

Figure 22: Examples of attribute rules.

Rules that introduce DRS constants based on certain patterns are another exam-
ple of this. The time rule we have seen for instance. UD-Boxer can similarly add
a speaker or hearer constant based on the Person9 UD feature. This morphological
feature indicates the type of a pronoun. Figure 23 shows these rules.

1 rule expand_first_person {
2 pattern {
3 S [upos=PRON, Person=1];
4 }
5 without {
6 S [token="GENDER"];
7 }
8 commands {
9 S.token = "GENDER";

10 add_node SC;
11 SC.token = "speaker";
12 add_edge S -[token="EQU"]-> SC;
13 }
14 }

(a) Rule to add a speaker constant.

1 rule expand_second_person {
2 pattern {
3 H [upos=PRON, Person=2];
4 }
5 without {
6 H [token="GENDER"];
7 }
8 commands {
9 H.token = "GENDER";

10 add_node HC;
11 HC.token = "hearer";
12 add_edge H -[token="EQU"]-> HC;
13 }
14 }

(b) Rule to add a hearer constant.

Figure 23: Examples of attribute rules that add constants.

9 https://universaldependencies.org/u/feat/Person.html

https://universaldependencies.org/u/feat/Person.html
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Finally, we want to highlight how language-specific rules are used in UD-Boxer.
Some constructions are almost impossible to detect from syntactic and morpholog-
ical features alone. Two prominent examples are negation and quantifiers. We have
seen how these are encoded in DRGs using boxes and NEGATION edges. In the trans-
formation step, UD-Boxer tries to find these constructions by looking for specific
lemmas. Figure 24 lists some of these language-specific rules.

1 rule box_negation_det {
2 pattern {
3 N [lemma=<list of lemmas>];
4 * -[1=advmod|det]-> N;
5 }
6 without {
7 P [token="NEGATION"];
8 }
9 commands {

10 del_node N;
11 add_node N_BOX;
12 N_BOX.token = "NEGATION";
13 }
14 }

(a) Rule to introduce negation box.

EN no, not, never

NL niet, geen, nooit

IT non, mai

DE nicht, kein, keine, keines, nie

(b) Language-specific negation lemmas.

1 rule box_quantifier {
2 pattern {
3 N [lemma=<list of lemmas>];
4 }
5 without {
6 P [token="NEGATION"];
7 Q [token="NEGATION"];
8 }
9 commands {

10 del_node N;
11 add_node N_BOX;
12 add_node N_BOX_2;
13 N_BOX.token = "NEGATION";
14 N_BOX_2.token = "NEGATION";
15 add_edge N_BOX -[token="NEGATION"]-> N_BOX_2;
16 }
17 }

(c) Rule to introduce quantifier boxes.

EN every, everyone, everybody, ev-
erything, always, all, whoever,
whomever, both, whatever

NL iedereen, elk, elke, alle, alles, altijd,
iedere

IT tutto, tutti, entrambe, entrambi, ogni,
ciascuno, qualsiasi

DE jeder, jedes, jederman, jegliche, alle,
alles, stets, beide, immer

(d) Language-specific quantifier lemmas.

Figure 24: Examples of language-specific rules.

These are not all language-specific rules, but the examples demonstrate how
these rules are structured. All language-specific rules deal with negation and quan-
tifiers and use a short list of language-specific lemmas. We can see that the rules in
Figure 24 do not connect the box nodes to any existing nodes in the graph. This is
rather difficult to achieve in this step since we have not resolved the node and edge
types at this stage. This also ties into the limitation of UD-Boxer we mentioned
previously, it assigns all nodes to the same NEGATION scope. Often, the subject of
a sentence that contains negation should not be placed in the negation scope. An
example is the Tom does not have a microwave oven sentence we have seen before.

Another important aspect to consider in the transformation process is rule order-
ing. The rules in UD-Boxer are roughly ordered in the following way:

1. Add the token attribute - this node and edge attribute to store semantic con-
cepts is needed in almost all subsequent rules;

2. Combine nodes - we want to apply this rule early since several later rules
should work with the combined node of a multi-word token, instead of its
individual parts;

3. Label specific edges - some roles can already be derived from graph patterns,
it is not that important where this happens, as long as it happens before the
discard rules;
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4. Connect user and expand names - this needs to happen after the node com-
bining and before the discard rules;

5. Expand speaker and hearer nodes - same rationale as the previous;

6. Add time - adding temporal information should be done before the discard
rules;

7. Apply all language-specific rules - these rules also need to be applied before
the discard rules;

8. Apply discard rules - discard all semantically irrelevant nodes and edges;

9. Ensure numbers are constants at leaf nodes - leaf nodes that are numbers
should be considered as constants in a DRG, this step makes sure that happens
and it needs to be done after the discard rules since those can change what the
leaf nodes in a graph are;

10. Detach cycles where possible - this is a last step to fix possible errors by de-
taching two node cycles.

A final important factor to mention is how UD-Boxer deals with multiple sen-
tences. This can occur when multiple sentences exist in the same document. It can
also happen when a UD parser makes a mistake in parsing a single sentence. It
could introduce wrong sentence boundaries, making it look like multiple sentences.
These both result in separate UD graphs per sentence in the same CONLL file.

For multiple sentences, their individual UD graphs are given to GREW and are
then resolved one by one. After this, the step of gluing multiple graphs together is
performed. This is done by going through the graphs in sequential order and con-
necting their active (latest) boxes. Algorithm 1 shows pseudocode for this process.
This operation keeps all graphs intact, nothing gets overwritten or removed. This is
also why we refer to this as ‘glueing’ graphs together, instead of combining or merg-
ing for instance. The label the edge connecting these boxes gets assigned should be
dependent on the semantic content of the graphs. However, for now, this is always
CONTINUATION, the most frequent box-to-box edge in the training data. Improving
this likely requires an additional component in UD-Boxer that receives the ‘glued’
graph and does another round of edge resolving, specifically for the box-to-box
edges. We further discuss this point of improvement in Chapter 5.
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Algorithm 1 Pseudocode for ‘glueing’ DRGs together.

1: listOfGraphs = [G1,G2,G3, . . . ,Gn]
2: A = listOfGraphs.popLeft() ▷ The initial graph to glue the rest onto.
3: nodeMapping = hashMap() ▷ Needed to prevent overwriting content in A.
4:
5: for B = listOfGraphs do
6: for node = B.nodes() do
7: if node.type == BOX_NODE then
8: activeBox = A.boxNodes.last()
9: newNode = A.addNode(node) ▷ The active box is now the new box.

10: A.addEdge(activeBox,newNode)
11: else
12: newNode = A.addNode(node)
13: end if
14: nodeMapping[node.id] = newNode.id
15: end for
16:
17: for (fromId, toId) = B.edges() do
18: A.addEdge(nodeMapping[fromId],nodeMapping[toId])
19: end for
20: end for

4.5 substituting syntactic labels with semantic
concepts

UD-Boxer uses various mappings to substitute syntactic labels with semantic con-
cepts. The main mappings are:

• UD UPOS tag to WordNet POS tag - for creating synset ids;

• UD morphological Tense to DRS tense - for resolving temporal relations;

• UD morphological Gender to synset - for resolving persons and entities;

• UPOS tags and dependency to role or operator - for general edge labeling;

• Lemma and WordNet POS tag to sense - for creating synset ids;

• Lemma to sense - for creating synset ids.

The first three mappings are rather straightforward and do not require training data.
Figure 25 shows these in full.

FUT → TSU
IMP → TPR
PAST → TPR
PQP → TPR
PRES → EQU

(a) Morphological Tense to DRS
tense mapping.

ADJ → a PART → r
ADP → n PRON → n
ADV → r PROPN → n
AUX → v PUNCT → n
CCONJ → n SCONJ → n
DET → n SYM → n
INTJ → n VERB → v
NOUN → n X → n
NUM → n

(b) UPOS tag to WordNet POS
tag mapping.

COM → person.n.01

FEM → female.n.02

MASC → male.n.02

NEUT → person.n.01

(c) Morphological Gender to
synset mapping.

Figure 25: Basic mappings to get semantic concepts or information from syntactic features.

Most are self-explanatory if one is familiar with UD. Some of the POS tag map-
pings are not ideal. PART can refer to a lot of semantically different tokens for
instance.
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The next three mappings are created automatically using training data. All
mappings are extracted using the same method. This method, while rather simple
in its approach, is somewhat intricate to describe.

To start the extraction process, we take the UD graph and gold DRG for a par-
ticular document from our training data. Next, we apply the transformation and
substitution steps. If the resulting graph and gold graph are isomorphic, we iterate
through the nodes and edges of both. While doing this, we store correct seman-
tic labels and their corresponding syntactic labels from the UD graph for later use.
This is what makes this process intricate to describe. To start the process, we need
to bootstrap it in an already working system. This was done by first storing all
mappings from isomorphic graphs, not just the correct ones. The better the graph
transformations become, the better the mapping extraction also becomes.

The dataset created by the mapping extraction consists of all available informa-
tion per triple, so all UD and DRG information belonging to the from node, the edge
and the to node. This dataset can be used for many different approaches. For the cur-
rent project, for example, an experiment was done with training an edge classifier
with this data based on UD information. However, this proved to be quite difficult
since a lot of the UD triples are ambiguous and can map to multiple semantic con-
cepts. For this reason, and to stay with the transparency and explainability design
goals of UD-Boxer, we chose the mapping approach instead. This approach mainly
serves as a baseline of sorts and is certainly an area of improvement.

We mentioned the edge mappings before in the examples. These are based
on the most frequent counts of triples of attributes in the training data. They are
formatted as follows:

Definition: UPOS-deprel-UPOS → Role or DRS operator

Example: ADJ-obl-NOUN → Stimulus
Example: ADJ-nsubj-NOUN → AttributeOf

Again, this is by no means ideal, but most common constructions are covered quite
well by this method. This also results in an entirely transparent and easily editable
file with mappings. Recall that the edge resolving only happens if no valid label
was applied in the transformation step. These mappings are a second-tier fallback of
sorts, with the default edge label (role) being the final fallback. An advantage of this
approach is that these mappings are language-neutral, which is also how they are
used in UD-Boxer. The results in Chapter 5 were obtained with 124 automatically
extracted mappings. These all stem from the English gold training data.

Next are the node mappings. These are also based on the most frequent counts
in the training data. This mapping is language-specific since the lemmas in synsets
are almost exclusively in English in WordNet. Some foreign words (compared to
English) are present in WordNet, but WordNet is intended as an English resource.
All node mappings are based on the lemmas from the UD parse, which includes
the combined lemmas from the transformation step. UD-Boxer has two strategies
to get a sense number for a given synset node. First, it looks in its mappings with
both the lemma and WordNet POS tag. This makes the lookup rather fine-grained.
These mappings are formatted as follows:

Definition: lemma.wordnet-pos → Synset

Example: badger.n → badger.n.02

Example: badger.v → badger.v.01

This is a real example and shows the value of including the POS tag in the lookup.
The first example refers to the animal and the second to rudely walking somewhere.
If this lookup fails, due to an unknown lemma and POS tag combination, UD-Boxer
tries again with just the lemma. These are very similar to the previous mappings:

Definition: lemma → Synset

Example: serious → serious.a.06

Example: finish_off → finish_off.v.01
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Some experiments were done with adding silver data, in addition to the gold
training data, to extract the mappings. This did not improve results, using only gold
training data performed better on the development and training data splits. This
might indicate the bottleneck of this approach, with too much data the ambiguity
overpowers any fine-grained distinctions, which get flattened into a single lookup
anyway. Table 8 shows the number of mappings per language. We can clearly see
the difference in available data per language here as well. Despite this, results are
decent for the languages with far less data than English. We discuss this in the next
chapter.

Table 8: Number of mappings per language.

Lemma + POS Lemma only

English 4,054 3,831

Dutch 355 355

Italian 479 479

German 823 819

4.6 development process
UD-Boxer has been through various revisions throughout its development. Ini-
tial attempts for the graph transformation process were done without GREW. We
started by traversing the UD graph and recursively applying transformations to it
until it was isomorphic to the gold SBN graph. This worked decently but was hard
to maintain and extend since transformation ordering became cumbersome to work
with.

At this point, we came across GREW and the extensive tooling surrounding
it. The main development of the GREW rules was done by picking interesting
examples from the training data and experimenting with those. These examples
were chosen based on certain phenomena in gold DRGs, such as named entities,
multi-word tokens, possessive constructions, multiple entities, negation, quantifiers,
attribute roles, multiple sentences, certain box constructions and so on. Similarly,
some specific UD examples were also chosen based on interesting phenomena on
the UD side. These mainly originated from GREW Match10, an interactive treebank
query tool that uses user-defined GREW patterns to search in treebanks. Once the
system was working decently, we added and improved rules based on the lowest
scoring examples from the train and dev data splits per language.

Rules were developed by having the UD graph and gold SBN graph side-by-side
for a given example sentence. We then tried to create the most general and simple
rules that (structurally) transformed the UD graph into the SBN graph. The GREW
Transform11 tool was very helpful in this regard, due to its ability to show the results
of intermediate rule applications. It also helped considerably in developing the rule
ordering. All rules used in UD-Boxer are included in Appendix A.3. These also
include more detailed explanations and provide examples from the PMB dataset.

The mapping approach has stayed largely the same during development. The
main additional development done for this component was increasing its granular-
ity. Initial attempts mapped just the deprel label to a semantic label for instance.
This was not accurate at all, so the UPOS-deprel-UPOS mapping was developed in-
stead. The same goes for the sense mappings. The WordNet POS tag addition to
the sense lookup was added later to increase granularity.

10 http://match.grew.fr/
11 http://transform.grew.fr/index.html

http://match.grew.fr/
http://transform.grew.fr/index.html
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4.7 neural comparison system
To assess the results from UD-Boxer, and to answer our main research question,
we need a neural comparison system. We base our neural system on the current
state-of-the-art work done by van Noord et al. (2020)12. Our particular sequence-
to-sequence parser consists of an English BERT (Devlin et al., 2019) model that is
trained and finetuned on SBN from the 4.0.0 version of the PMB13. Note that the
systems described in van Noord et al. (2020) did not use SBN as their target format,
they instead targeted the clause notation for DRSs. Apart from this, the method is
the same: the model receives a raw sentence as its input sequence and the output
sequence it produces is a DRS notation, SBN in our case.

We developed two versions of this neural parser: one trained and finetuned on
just gold data and one on both gold and silver data. Note that we only created such
a system for English due to time constraints14. The neural parser has been named
Neural-Boxer in the current project. This in keeping with the Boxer, Neural-Boxer and
UD-Boxer naming convention. Neural-Boxer and UD-Boxer are the first semantic
parsers to target SBN directly.

12 We want to thank the main author of van Noord et al. (2020), dr. Rik van Noord, for helping to train and
finetune this model.

13 This parser is based on: https://github.com/RikVN/Neural_DRS.
How to run the parser with SBN:
https://github.com/RikVN/Neural_DRS/blob/master/AllenNLP.md#sbn-experiments.

14 After this thesis was handed in, results for other languages for the neural approach were obtained. They
are shown in Table 13 in Appendix A.2.

https://github.com/RikVN/Neural_DRS
https://github.com/RikVN/Neural_DRS/blob/master/AllenNLP.md#sbn-experiments
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In this chapter, we evaluate the performance of UD-Boxer on all four languages.
We present the results we need in order to answer our research questions. We also
compare the results of UD-Boxer and Neural-Boxer, just for English. We carry out
a detailed analysis to see the effect of input length on performance, as well as how
the systems deal with negation. Next, we perform an in-depth error analysis on
output from both UD-Boxer and Neural-Boxer. Lastly, we discuss the implications
of these results and outline areas of improvement.

5.1 general results
Tabel 9 shows results per UD parser, language and data split. We need these results
for RQ1. All scores are on macro level, i.e., the average across a data split. Ill-formed
output gets assigned all zeroes for the precision, recall and F1 metrics. Note that
only English has a separate eval data split.

Table 9: UD-Boxer results per data split, language and UD parser (Stanza and Trankit).
Scores are on macro level. ‘Err’ refers to the percentage of ill-formed graphs a
system produced for that data split. No output is also considered to be ill-formed.

Dev Test Eval
P R F1 Err P R F1 Err P R F1 Err

Stanza

English 83.6 81.6 82.1 0.3% 83.8 81.4 82.0 0.0% 83.1 80.5 81.3 0.5%
Dutch 78.0 74.5 75.5 0.0% 77.3 75.4 75.8 0.0% - - - -
Italian 79.5 74.2 76.2 1.9% 81.2 76.6 78.4 0.9% - - - -
German 80.8 77.2 78.4 0.0% 80.1 75.7 77.3 0.0% - - - -

Trankit

English 83.7 81.3 81.9 0.3% 83.6 81.1 81.8 0.0% 83.6 80.7 81.5 0.0%
Dutch 77.8 74.8 75.8 0.0% 77.1 75.6 75.8 0.0% - - - -
Italian 80.8 76.0 77.8 0.0% 81.9 77.3 79.1 0.0% - - - -
German 79.9 77.9 78.4 0.0% 79.2 76.8 77.5 0.0% - - - -

UD-Boxer scores slightly higher with Stanza for English, while the other lan-
guages perform better with Trankit or are tied between the two parsers. When
looking at the percentage of ill-formed output (Err), we see that UD-Boxer almost
always generates well-formed output.

It is interesting to see that UD parses from Trankit seem to be more robust that
Stanza’s for Italian. Trankit has no errors for Italian, but Stanza has rather high
error percentages across both data splits. This indicates that UD-Boxer is not the
problem in this particular case. For English, the results of both UD parsers have
the exact same error count for the dev split, which could indicate a problem with
UD-Boxer.

However, at closer inspection, the 0.3% error percentage consists of three errors
for Trankit and three for Stanza, of which only one overlaps1. Except for the over-
lapping one, all errors are due to unusual UD parses. In the next section, we go
into more detail regarding these errors.

We can see that English scores the highest across the board. This is likely due to
the large amount of gold data that is available for English, compared to the other
languages. Dutch has seven times less gold data compared to English, Italian six
and German four. Still, even with considerably less gold data, the scores are not

1 Stanza: en/gold/p30/d1768, en/gold/p40/d2942, en/gold/p10/d3030.
Trankit: en/gold/p10/d3099, en/gold/p10/d3084, en/gold/p10/d3030.
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that far behind English. Additionally, all languages across all data splits manage F1-
scores of >75.0, which shows UD-Boxer’s potential. The (almost) language-neutral
approach is already quite decent and there are clearly identifiable areas of improve-
ment, which underlines this potential even more.

5.2 comparison with a neural system
The scores we have seen so far are not that insightful without a system to compare
against. We also need this comparison to answer our main research question. Let
us take a look at how UD-Boxer stacks up to the performance of Neural-Boxer2.
Table 10 shows the results for English for UD-Boxer per UD parser. It also shows
results for Neural-Boxer per training dataset and evaluation method. As we have
discussed in Section 3.3, the strict evaluation method considers wrong indices to be
ill-formed and lenient considers them to be constants. Ill-formed graphs, regardless
of the reason why they are ill-formed, always receive all zeroes for all metrics. We
do not provide strict results for UD-Boxer since it achieves identical scores between
the two evaluation methods. In addition, it is technically impossible for UD-Boxer
to make these index errors.

Table 10: UD-Boxer and Neural-Boxer comparison for English. Results from both UD
parsers (Stanza and Trankit) are shown for UD-Boxer. Results from Neural-Boxer
trained on just gold data and trained on both gold and silver data are shown. Strict
scores refer to the strict evaluation mode regarding ill-formed graphs. Scores are
on macro level. ‘Err’ refers to the percentage of ill-formed graphs a system pro-
duced for that data split. No output is also considered to be ill-formed.

Dev Test Eval
P R F1 Err P R F1 Err P R F1 Err

UD-Boxer (Stanza) 83.6 81.6 82.1 0.3% 83.8 81.4 82.0 0.0% 83.1 80.5 81.3 0.5%
UD-Boxer (Trankit) 83.7 81.3 81.9 0.3% 83.6 81.1 81.8 0.0% 83.6 80.7 81.5 0.0%

Gold
Neural-Boxer 84.0 82.1 82.8 4.6% 85.5 83.0 84.0 3.7% 83.4 80.8 81.7 3.9%
Neural-Boxer (strict) 81.1 79.4 80.0 8.3% 83.4 81.1 82.0 6.4% 79.9 77.6 78.4 8.3%

Gold + Silver
Neural-Boxer 92.8 92.4 92.5 2.0% 93.0 92.3 92.5 2.3% 92.4 91.5 91.8 2.8%
Neural-Boxer (strict) 92.0 91.5 91.6 3.1% 92.4 91.7 91.9 3.0% 91.0 90.3 90.5 3.7%

We can see that Neural-Boxer, trained on gold and silver, outperforms every-
thing else by quite a margin. However, it still produces considerably more ill-
formed output than UD-Boxer, even with the lenient evaluation method. These
scores are impressive but do not tell the whole story, as we will see in Section 5.5.

Neural-Boxer trained on just gold data and UD-Boxer perform very similarly.
This Neural-Boxer system produces considerable amounts of ill-formed output. It is
also struggling quite a bit in the strict evaluation mode. Less data is, unsurprisingly,
noticeably detrimental to the neural method.

5.3 performance by input length
An important factor to consider when evaluating a semantic parser is how well it
deals with input sequences of various lengths. We need these results to answer
RQ2. As we have mentioned, neural sequence-to-sequence models are somewhat
notorious for their drop-off in performance for long inputs (Press et al., 2021). As

2 After this thesis was handed in, results for other languages for the neural approach were obtained. They
are shown in Table 13 in Appendix A.2.
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we have seen in Section 3.1, the PMB primarily consists of short sentences. Nev-
ertheless, it is interesting to look at how UD-Boxer and Neural-Boxer perform on
different input lengths. Figure 26 shows F1-scores by the number of characters in
the input sequence.
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Figure 26: Macro F1-score by input length, per system, for all languages. Results from
both UD parsers (Stanza and Trankit) are shown for UD-Boxer. Results from
Neural-Boxer trained on just gold data and trained on both gold and silver data
are shown. Strict scores refer to the strict evaluation mode regarding ill-formed
graphs. The data is an aggregate of dev and test splits (eval as well for English).
The number of characters is based on the *.raw files from the PMB, stripped
from any leading or trailing whitespace. In bold are the number of documents
per grouping.

We can see that performance for all languages drops at about the same rate.
Additionally, except for English, the maximum sequence length in the dataset is
about 80 characters (∼11 tokens). This makes it difficult to make substantial claims
about the performance of the systems on those languages at those lengths. The
low document count at those lengths also coincides with this. The trend for all
languages and the drop-off is about the same. We can likely assume similar patterns
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to English at longer lengths for those languages, only with slightly lower scores
across the board.

The results for English show the most interesting patterns. All systems start at
roughly the same performance level. At around the 45-character mark we can see
a drop-off in performance for Neural-Boxer trained on only gold data. UD-Boxer
is quite stable in its performance, regardless of UD parser. There are no big spikes
or dips, just a general downwards trend. Neural-Boxer trained on gold and silver
data generally outperforms everything else. UD-Boxer stays somewhat competitive
though, while Neural-Boxer trained on just gold data lacks behind. This is quite
clear up until the 61-80 character mark. This trend continues afterwards, but due
to the low document count at those lengths, we cannot reliably draw conclusions
from it.

Figure 27 shows a similar plot, with scores by number of tokens instead of num-
ber of characters.

This figure shows similar patterns as Figure 26. The slight downwards trend
for all systems is also visible here. The trend across languages for UD-Boxer is
similar once again. For English, we see that Neural-Boxer trained on gold and
silver data outperforms the other systems, although not by a huge margin. Neural-
Boxer trained on just gold data and UD-Boxer perform very similarly. However, this
Neural-Boxer drops off after the 9+ token mark, while UD-Boxer still shows decent
performance. Although, again, it is hard to make substantial claims about this due
to the low document counts.

The main findings from Figure 26 and 27 are: UD-Boxer shows similar per-
formance patterns across languages, Neural-Boxer trained on gold and silver data
outperforms everything else and Neural-Boxer trained on just gold data performs
very similarly to UD-Boxer up to a certain point, after that it tapers off.

Sadly, we do not have Neural-Boxers trained on languages other than English3.
Still, one can imagine the performance considering the large differences in gold
data that is available for the other languages when compared to English. As we
have mentioned in Section 3.1, Dutch has seven, Italian six and German four times
less gold data available, compared to English.

5.4 negation performance
Since negation is a crucial phenomenon in semantics, it is good to take a look at
how UD-Boxer and Neural-Boxer deal with it. Especially since negation is also
used to model quantifiers in DRGs. We need these results to answer our third
research question. As we have seen before, UD-Boxer’s implementation of negation
is rather basic. It simply looks for some particular lemmas combined with certain
dependency patterns and, based on that, inserts a NEGATION box. This box is just
connected to the previously inserted box, so no proper negation scope is assigned.
Nonetheless, we can still evaluate how well it performs in detecting negation. We
do this in two ways. One is to frame the negation detection as its own information
retrieval task. With this, we can list precision, recall and F1-scores for just that
component. The other is to look at how well correctly detected DRGs containing
negation perform using SMATCH. For both evaluation methods, we split the scores
per number of negation clauses. Table 11 shows the counts of negation clauses in
our data.

We can see that there are not many negation clauses in the data. Still, we can gain
some insight into how the systems handle these. Since there are very few documents
with three or four clauses, we will not include those in the results. Table 12 shows
the results of the negation evaluation.

3 General performance results for the neural approach on other languages were obtained after this thesis
was handed in. They are shown in Table 13 in Appendix A.2. An analysis of the effect of input length
was not done for these results.
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Figure 27: Macro F1-score by input length, per system, for all languages. Results from
both UD parsers (Stanza and Trankit) are shown for UD-Boxer. Results from
Neural-Boxer trained on just gold data and trained on both gold and silver data
are shown. Strict scores refer to the strict evaluation mode regarding ill-formed
graphs. The data is an aggregate of dev and test splits (eval as well for English).
Tokens are based on *.tok.off files from the PMB, note that punctuation marks
are counted as single tokens in those files. In bold are the number of documents
per grouping.

The results are quite varied and this is partially due to the limited amount of
data. However, between systems, there is also a lot of variation. We want to high-
light one surprising result from the neural parsers that is not shown in the table.
This is a single DRG with six negation clauses, identically produced by both Neural-
Boxer systems for the sentence Everyone knows everyone4, the gold standard for that
sentence has four negation clauses.

First let’s discuss the negation detection, as seen in the left main column of
Table 12. Neural-Boxer trained on gold and silver data outperforms everything
yet again in terms of F1-scores. UD-Boxer fares rather well overall. Neural-Boxer
trained on just gold data lacks behind in almost everything. We can see that preci-

4 PMB id: en/gold/p01/d2144.
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Table 11: Number of negation clauses per language. The data is an aggregate of dev and
test splits (eval as well for English).

# Negation clauses
Zero One Two Three Four

English 2,676 253 93 7 5

Dutch 841 65 20 2 -
Italian 886 80 34 1 -
German 1,005 80 19 - 1

Table 12: Negation performance of UD-Boxer and Neural-Boxer, per language, per number
of negation clauses. Results from both UD parsers (Stanza and Trankit) are shown
for UD-Boxer. Results from Neural-Boxer trained on just gold data and trained
on both gold and silver data are shown. Strict scores are left out since they were
identical to the lenient scores. The data is an aggregate of dev and test splits (eval
as well for English). Scores are on macro level.

Negation detection performance True positive DRG scores
per # negation clauses. per # negation clauses.

One Two One Two
P R F1 P R F1 P R F1 P R F1

U - Stanza

English 94.3 85.8 89.9 78.0 83.9 80.8 82.7 80.0 80.7 85.3 72.0 77.5
Dutch 98.4 95.4 96.9 91.7 55.0 68.7 75.8 74.1 74.3 85.3 70.6 77.0
Italian 98.7 96.3 97.5 100.0 61.8 76.4 82.1 77.9 79.4 81.9 67.4 73.6
German 100.0 68.8 81.5 83.3 52.6 64.5 80.4 77.3 78.2 86.6 73.8 79.6

U - Trankit

English 98.3 47.0 63.6 78.8 83.9 81.2 84.1 80.2 81.4 86.3 71.7 77.8
Dutch 98.4 95.4 96.9 91.7 55.0 68.7 75.5 74.4 74.4 85.4 71.0 77.3
Italian 98.7 97.5 98.1 100.0 61.8 76.4 81.6 77.7 79.1 82.3 67.7 73.9
German 100.0 68.8 81.5 83.3 52.6 64.5 79.9 78.0 78.4 86.6 73.8 79.6

N (gold) English 76.5 81.0 78.7 78.0 41.9 54.5 91.4 88.3 89.6 87.6 87.5 87.2
N (gold + silver) English 96.4 95.3 95.8 94.1 86.0 89.9 96.1 96.4 96.2 94.8 94.4 94.4

sion is generally quite high for UD-Boxer, which indicates that the current language-
specific lemmas are quite good. Recall is not always as high, indicating that UD-
Boxer is missing some lemmas or constructions, especially for German. This lower
recall is also noticeable between Stanza and Trankit for English. This is quite sur-
prising since the overall scores between these parsers are quite similar. When taking
a closer look, we see that Trankit treats lemmas of contractions differently compared
to Stanza. Consider the token didn’t for instance. Stanza splits this into two tokens
and lemmatizes both, resulting in do and not. Trankit does not do this and treats
it as a single token, which then stays the same during lemmatization. UD-Boxer
was designed with the Stanza way of parsing in mind and this difference slipped
through the cracks in development. In fairness, UD states in their guidelines that
these multi-word tokens should be split up or it should be well documented in case
they are not5. At the time of writing, this is not the case for Trankit6. This effect is
only visible for English since it has plenty of negation-related contractions (doesn’t,
didn’t, don’t, hasn’t, won’t etc.), whereas the other languages do not.

Lastly, let us examine the performance of the parsers in case they did insert
negation. These are the SMATCH scores of the graphs where the number of clauses
was detected correctly. In other words, the true positives of the negation detection
task. The second main column in Table 12 shows these results. This is, however, not
a full analysis of evaluating scope, it is instead indirectly evaluated when comparing
the graphs with SMATCH. For this reason, we cannot draw full conclusions from
these scores regarding scope. The comparison between the systems is valuable
nonetheless. We can see that UD-Boxer lacks behind quite a bit in this area. This is
largely due to the complete absence of assigning negation scope. The Neural-Boxers

5 https://universaldependencies.org/u/overview/tokenization.html
6 https://trankit.readthedocs.io/en/stable/lemmatize.html

https://universaldependencies.org/u/overview/tokenization.html
https://trankit.readthedocs.io/en/stable/lemmatize.html
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seem to fare well in this regard, especially with a single negation clause. This is a
clear area of improvement for UD-Boxer.

5.5 error analysis
Recall the UD-Boxer error from page 37 that went wrong for both Stanza and Trankit
for English. Let us take a closer look at it since it contains several interesting mis-
takes.

The sentence in question is There is a little boy walking with his dog. The Stanza
and Trankit parses are identical and not unusual. The problem is that UD-Boxer
generates a cyclic graph. As we have discussed in Section 3.3, this is not allowed by
the SBN specification, as well as the Penman format, which we need for evaluation.
Figure 28 shows the ill-formed output as well as the gold graph.

time.n.08 there.n.01

be.v.02

little.a.03

boy.n.01

walk.v.01

dog.n.01

now

EQU

Time Location Theme

Attribute Time

Theme

User

(a) Ill-formed output.

walk.v.01

time.n.08

little.a.03

boy.n.01

male.n.02

dog.n.01

Time ThemeCo-Theme

now

EQU

AttributeOf

Owner

(b) Gold graph.

Figure 28: Ill-formed (cyclic) UD-Boxer output and gold graph for the sentence There is a
little boy walking with his dog. PMB id: en/gold/p10/d3030.

We can see that UD-Boxer tries to connect the User of the dog. This is done by
connecting the target of an outgoing nmod:poss edge to the nsubj node of the graph.
In a lot of cases, this goes well, such as in our running example from Chapter 4.
However, the further away the target of the nmod:poss edge is from the subject, and
the more nodes are present after the target, the higher the risk of creating a cyclic
graph becomes. There is a rule that detaches possible cycles, but it only looks at
cycles between two direct nodes, here we are dealing with a cycle spanning three
nodes.

We can see some other interesting mistakes in this example. Note that in the
gold graph walking is considered to be the root (or primary verb), while in both
UD parses is is considered to be the root. This leads to a different structure. The
Time relation from boy to walk shows the weak spots of the mapping approach.
This particular node-edge-node mapping (NOUN-obl-VERB) happens to be highly
ambiguous. Lastly, we can see that UD-Boxer adds a location there to the graph.
Although it is slightly awkward English7, this interpretation of the sentence can
be read as A little boy is walking with his dog there, while the gold graph views the
sentence as a general event without a particular location. This likely also coincides,
accidentally or not, with the be.v.02 node being there since it is, arguably, required
for this interpretation of the sentence.

As mentioned, the high scores of Neural-Boxer do not tell the whole story. While
UD-Boxer can certainly output meaning representations of low quality, it always
stays close to the input sentence. This is of course no surprise since the only in-
formation it uses stems from a UD parse. This means that a bad meaning repre-
sentation from UD-Boxer is mainly due to constructions that are too complex, poor

7 A native Dutch speaker might produce such a sentence.
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node and edge labels or incorrect word-sense disambiguation. These all result in a
meaning representation that is either lacking in its expression or wrongly describes
the input sentence. The previously mentioned default values used by UD-Boxer are
a good example of this. Specifically, where it assigns female.n.02 to all PROPNs it
cannot resolve properly. This leads to a bad representation, but we can identify why
it happened and what can improve it (a Named Entity Recognition (NER) component).
In addition, it does not suddenly add new constants or concepts.

When we look at Neural-Boxer, this becomes a different matter. While skim-
ming through the output from system experiments, we noticed some strange hallu-
cinations produced by Neural-Boxer. Figure 29 shows two interesting examples that
give some idea of this problem. We want to give the system the benefit of the doubt,
so we only consider output from the best Neural-Boxer model, trained on both gold
and silver data.

male.n.02 time.n.08

live.v.01

country.n.02

David Cameron

Name

now

EQU

Theme TimeLocation

America

Name

(a) DRG for David Beckham now lives in America.
PMB id: en/gold/p51/d3003. (F1 96.7)

female.n.02

die.v.01

time.n.08bulimia.n.01

Patient TimeCauser

now

TPR

(b) DRG for She died from tuberculosis.
PMB id: en/gold/p80/d2937. (F1 96.3)

Figure 29: Hallucinations from Neural-Boxer trained on gold and silver data.

The output is well-formed and scores high. However, the meaning of these
DRGs is drastically different from the input sentence and we do not know why. In
Figure 29a, Neural-Boxer decides the sentence is suddenly about an entirely differ-
ent person. Figure 29b lists a completely different cause of death. We cannot go
through all examples here, but there are a remarkable number of hallucinations in
the neural output. Again, both examples are produced by the best model trained on
both gold and silver data. This approach is almost identical to the current state-of-
the-art method in DRS parsing. This begs the question of what other unexplainable
errors are hidden behind high scores.

As for the cause of these particular hallucinations, it is likely due to frozen
BERT layers or bias in the training data. The model might be recognizing certain
sequences of tokens it has seen often during training. In our first example, it might
see David and continue with Cameron, since it has seen that particular combination
more often than David and Beckham. This is likely similar to the second example,
where it saw died from, which happened to result in bulimia being the most likely
token to follow it, instead of tuberculosis. However, this is all guesswork since we
cannot ask the model or look inside it to figure out why it chose these particular to-
kens. This is something we can easily do with UD-Boxer, as we have seen numerous
times.

Next, let us take a look at a sentence both UD-Boxer and Neural-Boxer struggle
with. Figure 30 shows an example of this.



5.5 error analysis 45
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female.n.02

17.n.01

now
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TimeExperiencer Theme Agent
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Agent

July

Name

Agent

1990

Agent

(a) UD-Boxer produced DRG. (F1 56.7)

female.n.02 time.n.08

bear.v.02

time.n.08

06-00

ClockTime

now

TPR

Patient TimeStart

06:00-1

ClockTime

(b) Neural-Boxer produced DRG. (F1 76.6)
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bear.v.02

time.n.08
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ClockTime

7

MonthOfYear
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DayOfMonth

1990
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now

TPR

(c) Gold DRG.

Figure 30: UD-Boxer, Neural-Boxer (gold + silver) and gold DRG for the sentence She was
born at six a.m. on July 17, 1990. PMB id: en/gold/p90/d2854.

We can see that both UD-Boxer and Neural-Boxer have a hard time parsing this
sentence. UD-Boxer tries to interpret parts of the date expressions as synsets, which
causes problems. Neural-Boxer loses the year, month and day. It also adds two time
nodes and two 06:00 times, which is rather strange. Lastly, UD-Boxer indicates that
the person being born is the Experiencer of this, while Neural-Boxer produces the
correct label for this edge, namely Patient.

In Appendix A.1 we provide some additional error analyses. These include:
strict versus lenient results, more interesting poor results and good results from
both systems.



6 C O N C L U S I O N

In this chapter, we answer our research questions, discuss limitations of our ap-
proach and indicate directions for future work.

6.1 overall conclusions
Before we answer our research questions, we want to give a quick summary of our
approach and what we have discussed so far. The main strengths of our approach
are:

• It supports four languages and is easily extendible to more;

• It shows promising performance, especially considering little training data is
available for languages other than English;

• It is fully explainable;

• It produces very little ill-formed output;

• It is decent at handling long input sequences.

The main drawbacks of our approach are:

• Node and edge labeling is basic;

• No actual word-sense disambiguation is done;

• No proper scope is assigned to negation and quantifier constructions;

• Named entities and date and numeric expressions are not handled well.

We go into more detail regarding these points when we discuss directions for future
work. With these lists and the previous chapter in mind, let us answer the research
questions of this project.

First, our main research question:

How do Discourse Representation Structures derived from Universal Depen-
dencies using a graph transformation approach compare to those created by a
fully neural sequence-to-sequence model?

As we have seen, the answer to this question depends on multiple factors. In terms
of scoring, if there is a lot of training data available for the neural method, our
approach lacks behind. If there is not a lot of training data, our approach performs
very similarly to the neural method, even beating it in some aspects.

As we have also seen, scoring alone is not the full story. The neural approach
has shortcomings that need to be taken into consideration. For one, both neural
systems produce far more ill-formed output compared to ours, even with the le-
nient evaluation method. Another point to consider is the rather poor performance
regarding negation detection of Neural-Boxer trained on just gold data. The overall
performance of this model also drops noticeably for longer input sequences. The
final point to keep in mind are the hallucinations of both neural models. This point
is arguably the most devious one since SMATCH scores can be very high for a given
graph with one or more hallucinations. In fact, this is often the case. It is hard to de-
tect these with automatic measures. The lack of explainability of the neural systems
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only furthers this problem. Our system can also produce bad meaning representa-
tions, but it does not suddenly introduce new constants or entirely new concepts
that were not present in the input sentence. The cause of these bad representations
can also be fully traced and explained in UD-Boxer.

So, to answer our main research question:

Discourse Representation Structures derived from Universal Dependencies, us-
ing a graph transformation approach can come close to or beat a fully neural
model, but only when little data is available to train the neural model. The
output of our approach is almost always well-formed, which is not true for the
neural method. Lastly, the neural method lacks explainability and can produce
strange output. These shortcomings are noticeable even when there is a lot of
training data available for the neural method.

This answer does not tell us anything about the different aspects of the system and
their performance. So, to provide more background to the previous answer, let us
examine the sub-questions. Our first sub-question:

RQ1: To what extent would such an approach be language-neutral or easily
transferrable to multiple languages?

We have seen that it is basically impossible to do our approach without any language-
specific features. Some crucial constructions require these features, such as negation
and quantifiers. These cannot be derived from the language-neutral information in
a UD parse alone. Additionally, the node labels, specifically the synsets, also re-
quire some language-specific training data. However, both of these are, arguably,
very simple to implement. For negation and quantifier detection, we re-use four
identical rules with their only language-specific part being a list of five to ten lem-
mas per rule. The only work required when adding new languages in this regard
would be to add some lemmas.

As for the sense number labeling, these are automatically extracted when some
training data is available. Still, even this is not strictly necessary as the system
can function fine without it. In that case, it would simply not attempt to do any
word-sense disambiguation and consider everything to be the 01 sense. Consider-
ing WordNet sense numbers are based on frequencies and a substantial number
of synsets have just a single entry, this would not result in a drastic loss of perfor-
mance.

Lastly, we have seen that our approach works well even with very little training
data. Sadly, we did not train neural models for the other languages1. However, the
large difference in gold data availability for the other languages would very likely
have a much larger effect on the neural method compared to ours. We can even
see this happen for English when comparing the neural system trained on just gold
data and the one on gold and silver data.

So, to answer RQ1:

Such an approach can almost be fully language-neutral. Detecting negation and
quantifier constructions and labeling synset nodes requires language-specific
information. These parts are, however, small, sometimes even optional and
require minimal work. We can say that the vast majority of such a system is
language-neutral.

Let’s examine our next sub-question:

RQ2: How well does such an approach deal with input sequences of various
lengths?

1 These results were obtained after this thesis was handed in. They are shown in Table 13 in Appendix A.2.
Our assumption here was correct and our system outperforms all neural systems for all languages except
English. Surprisingly, this is even true when there is quite a lot of training data available for the neural
systems for those languages.
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We have seen that our approach shows similar performance trends across languages.
It starts high and gradually tapers off the longer the input sequences get. This
pattern is roughly the same when looking at the number of characters, as well as the
number of tokens in a given input sequence. When compared to the neural systems,
we see that the neural system trained on silver and gold data outperforms ours, but
not by a large margin. Our system stays competitive at long input sequences. All
systems start at roughly the same performance level. However, the neural system
trained on just gold data noticeably drops off at some point. Our system and the
other neural system, trained on gold and silver data, remain quite stable at longer
input sequences.

So, to answer RQ2:

The performance of such an approach gradually tapers off the longer the input
sequences get. It shows this trend across languages. Overall, the performance
is quite stable and the drop-off is relatively small.

Lastly, let’s examine RQ3:

RQ3: How well does such an approach handle negation and quantifiers con-
structions?

As mentioned, our approach currently can only detect negation and quantifiers, it
cannot properly resolve their scope. If we look at just the detection, it holds up well
and considerably outperforms the neural approach trained on just gold data. The
neural system trained on gold and silver data outperforms ours in this regard by
a decent margin. Across languages, we see that detecting a single negation clause
performs well for our approach. There is room for improvement in detecting two
clauses (quantifiers) however. Precision is generally very high, from this we can
conclude that the current language-specific lemmas (cues) are good. Recall can be
improved, especially for two clause detection, which means our system is missing
some lemmas. When we look at the scores of the graphs where negation detection
was correct, we see that our approach lacks behind both neural systems. This is
of course no surprise since our system does not assign any scope to negation or
quantifier constructions.

In closing, to answer RQ3:

Such an approach can detect single negation clauses quite well. It misses a
number of two clause cues, however, the ones it does detect are generally correct.
This is true across languages. Assigning scope to negation is not done at all, a
clear area of improvement.

As it stands, our approach and system are quite complete in terms of framework
and features. Naturally, some of these features can still be improved (and probably
will). The goal of creating a fully working system has been met. The performance
of our approach is promising and in certain aspects quite good. The system can
already be used as a lightweight semantic parser to play around with or even to
assist in DRS annotating. We have also shown that the SBN format is a promising
new approach in DRS parsing, particularly when considering DRGs as a target
format. In the process of using this new notation, we developed some useful tooling
for it regarding parsing, validating, translating it to other formats, evaluating it in
various ways and more.

6.2 directions for future work
Finally, let us consider some directions for future work. In practical terms regarding
our system, the following is a non-exhaustive list of possible improvements:
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• Add support for Enhanced UD - as discussed in Section 2.2, Enhanced UD
could be beneficial for detecting certain constructions and in semantic parsing
in general (Findlay and Haug, 2021);

• Add proper word-sense disambiguation - our system currently has two op-
tions for choosing a sense, either a single option from the mappings or 01

as a default, this is just a baseline of sorts compared to actual word-sense
disambiguation;

• Do more research into creating an edge labeling classifier - the edge mappings
mainly suffer from semantically ambiguous UD constructions at the moment,
improving this could involve training a sophisticated edge classifier that takes
the entire graph structure and more UD attributes into account for example;

• Validate constructed WordNet synsets - WordNet synsets created in our sys-
tem are not checked if they actually exist in WordNet, we mainly left this out
since most synsets are based on the gold training data, which is assumed to
be valid;

• Improve handling of named entities, dates and numerical expressions - this
can likely be done by incorporating a NER system since it is almost impossible
to do this from purely UD information alone;

• Handle more box constructions - there are several complex box constructions,
such as ALTERNATION, CONSEQUENCE or POSSIBILITY, that are not supported
currently.

In terms of future work regarding DRS parsing, we have shown that UD is cer-
tainly a good fit in this context. Previous work has shown it helps as an additional
feature in semantic parsing in general (Dozat and Manning, 2018; Xu et al., 2018)
and DRS in particular (Fancellu et al., 2019; Yang et al., 2021). Our system is the
first to create DRSs from UD directly, specifically to produce DRGs. There is of
course a lot more to be explored in this area, something Gotham and Haug (2018)
have worked on specifically. Our approach is also almost language-neutral with a
relatively low number of rules. These rules are also quite simple. The previously
discussed UDepLambda (Reddy et al., 2017) uses 123 rules in total for instance. This
is considerably more than the 33 our approach uses in total. We are targeting a
different meaning representation, but this difference is still notable.

An interesting possible extension or variation of our method could be a fully
integrated neuro-symbolic approach. In that case, the graph transformations could
be learned instead of entirely pre-defined. This is an area that was explored briefly
but proved to be too much for the scope of the project. A decision was made to aim
for a fully working and modular system, instead of a learnable graph transforma-
tion approach. The work from Fancellu et al. (2019) we have discussed, using graph
grammars, is certainly a good starting point for this.

The explainability and transparency aspect of DRS parsing is certainly an inter-
esting and important factor to consider in future work. As we have seen, Neural-
Boxer, which is based on the state-of-the-art in DRS parsing (van Noord et al., 2020),
can produce dubious output that is not easily detected with scoring metrics. These
hallucinations are quite detrimental in the context of semantic parsing. The neuro-
symbolic approach could help with this by producing a broader representation that
captures how a model got to its decision for example. Another approach could be
using two models side-by-side, a neural model that performs the actual inference
and another that watches this model and creates an explanation for it. These are of-
ten referred to as surrogate models and this technique has been successfully applied
in other areas (Angelov et al., 2021).

In general, it would also be interesting to look at the impact of this transparency
aspect in a downstream task. This can be a particularly important consideration for
semantic parsing in less academic settings for example.
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A A P P E N D I C E S

a.1 extensive error analysis

a.1.1 Strict versus lenient output

Let us consider some strict versus lenient output from Neural-Boxer and compare
it to UD-Boxer and the gold graph. This gives us some insight into what these eval-
uation methods contributed to the final results. Figure 31 shows some of examples
of this.
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Time ThemeLocation
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(a) Neural-Boxer (gold) produced DRG. (F1 93.1)

be.v.03

time.n.08

movie_theater.n.01

city.n.01 +4

LocationTime Theme

now

EQU

+

Quantity

(b) Neural-Boxer (gold + silver) produced DRG.
(F1 91.5 lenient, F1 0 strict)
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Figure 31: UD-Boxer, Neural-Boxer and gold DRG for the sentence There are many movie
theaters in this city. PMB id: en/gold/p91/d2583.

We can see that Neural-Boxer trained on just gold data is hallucinating a bookstore
instead of a movie theatre as well as a house instead of a city. Neural-Boxer trained
on gold and silver produces arguably ill-formed output by creating a wrong index.
This results in a ‘free floating’ node, which is technically valid SBN1, but not really
useful. This also leads to the rather strange Location of ‘+4’.

UD-Boxer has some trouble with this sentence as well. It interprets there as a
location once again. In addition, it cannot handle the Quantity construction, result-
ing in many being interpreted as an attribute instead. The city also ends up in the
wrong position with a rather strange edge. This is the exact same problem as in
Figure 32a.

1 With this we mean parsable by our SBN parser, i.e., it is a DAG in the proper format according to our
specification. If it is valid according to the official SBN specification is unclear.
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a.1.2 Poor Neural-Boxer output

Figure 32 shows an example of a sentence Neural-Boxer struggles with.

time.n.08
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(a) UD-Boxer produced DRG. (F1 83.3)
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house.n.01now

EQU Location

(b) Neural-Boxer produced DRG. (F1 61.9)
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be.v.03
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now

EQU

Time ThemeLocation

(c) Gold DRG.

Figure 32: UD-Boxer, Neural-Boxer (gold + silver) and gold DRG for the sentence Is there a
washing machine in the house? PMB id: en/gold/p80/d2803.

For some reason, Neural-Boxer adds the time relation to the washing machine
synset. It also does not model the is from the original sentence in the required
be node. The output from UD-Boxer is also not ideal since it interprets there as a
location. We have seen this before in Figure 28. On top of that, it labels the edge
between the house and the washing machine as EQU. When looking at the reason
for this, we can see that this particular mapping stems from NOUN-nmod-NOUN, which
is quite ambiguous.
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a.1.3 Good output

Figure 33 shows a somewhat long input sentence that both systems deal with well.

time.n.08trip.n.01

cancel.v.01

terrible.a.01

storm.n.01

now

TPR

TimeTheme Theme

Attribute

(a) UD-Boxer produced DRG. (F1 93.9)

trip.n.01 time.n.08

cancel.v.01

bad.a.02

storm.n.01now

TPR

Theme Time Causer

AttributeOf

(b) Neural-Boxer produced DRG. (F1 90.9)

trip.n.01 time.n.08

cancel.v.01

storm.n.01

terrible.a.03

now

TPR

Theme Time Causer AttributeOf

(c) Gold DRG.

Figure 33: UD-Boxer, Neural-Boxer (gold + silver) and gold DRG for the sentence The trip
was canceled because of a terrible storm. PMB id: en/gold/p50/d1422.

Neural-Boxer changes terrible to bad, which is not a big problem since the seman-
tic meaning is still close. The Causer edge connecting to bad instead of the storm is
also something to note. UD-Boxer has some trouble with its edge labeling and did
not figure out the Causer relation. It also did not get the correct sense for terrible.
Apart from these issues, both parsers perform similarly and very well.
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a.2 full results

Table 13: Full results for all experiments, per data split, language, training data (Neural-
Boxer only, gold, silver and bronze), evaluation method (Neural-Boxer only, lenient
and strict) and UD parser (UD-Boxer only, Stanza and Trankit). Scores are on
macro level. ‘Err’ refers to the percentage of ill-formed graphs a system produced
for that data split. No output is also considered to be ill-formed. Strict scores refer
to the strict evaluation mode regarding ill-formed graphs. Note that we do not
have a neural system for English trained on gold + silver + bronze data. Also note
that the ‘Eval’ data split only exists for English.

Dev Test Eval
P R F1 Err P R F1 Err P R F1 Err

UD-Boxer
(Stanza)

English 83.6 81.6 82.1 0.3% 83.8 81.4 82.0 0.0% 83.1 80.5 81.3 0.5%
Dutch 78.0 74.5 75.5 0.0% 77.3 75.4 75.8 0.0% - - - -
Italian 79.5 74.2 76.2 1.9% 81.2 76.6 78.4 0.9% - - - -
German 80.8 77.2 78.4 0.0% 80.1 75.7 77.3 0.0% - - - -

UD-Boxer
(Trankit)

English 83.7 81.3 81.9 0.3% 83.6 81.1 81.8 0.0% 83.6 80.7 81.5 0.0%
Dutch 77.8 74.8 75.8 0.0% 77.1 75.6 75.8 0.0% - - - -
Italian 80.8 76.0 77.8 0.0% 81.9 77.3 79.1 0.0% - - - -
German 79.9 77.9 78.4 0.0% 79.2 76.8 77.5 0.0% - - - -

Neural-Boxer
(g)

English 84.0 82.1 82.8 4.6% 85.5 83.0 84.0 3.7% 83.4 80.8 81.7 3.9%
Dutch 60.5 45.3 51.2 0.2% 60.2 45.3 51.1 0.4% - - - -
Italian 60.7 51.9 55.5 1.5% 61.2 51.6 55.7 1.5% - - - -
German 67.8 61.7 64.2 0.4% 67.2 61.4 63.8 0.2% - - - -

Neural-Boxer
(g) (strict)

English 81.1 79.4 80.0 8.3% 83.4 81.1 82.0 6.4% 79.9 77.6 78.4 8.3%
Dutch 33.9 26.4 29.3 43.5% 28.2 22.7 24.9 51.5% - - - -
Italian 47.2 41.1 43.6 23.1% 47.5 40.6 43.5 23.6% - - - -
German 64.7 59.0 61.4 5.2% 64.3 58.9 61.1 4.4% - - - -

Neural-Boxer
(g+s)

English 92.8 92.4 92.5 2.0% 93.0 92.3 92.5 2.3% 92.4 91.5 91.8 2.8%
Dutch 59.7 53.4 55.7 3.0% 59.2 54.4 56.2 2.6% - - - -
Italian 69.6 66.4 67.6 0.0% 70.8 67.8 69.1 0.0% - - - -
German 71.0 66.7 68.4 0.7% 70.8 66.7 68.3 0.4% - - - -

Neural-Boxer
(g+s) (strict)

English 92.0 91.5 91.6 3.1% 92.4 91.7 91.9 3.0% 91.0 90.3 90.5 3.7%
Dutch 53.1 47.8 49.7 14.0% 52.2 48.1 49.7 14.3% - - - -
Italian 67.9 64.9 66.1 2.6% 69.7 66.8 68.0 1.7% - - - -
German 68.3 64.3 65.9 4.5% 67.5 63.9 65.3 5.3% - - - -

Neural-Boxer
(g+s+b)

Dutch 73.2 71.0 71.9 0.9% 73.0 70.8 71.6 1.0% - - - -
Italian 76.2 75.4 75.6 0.0% 76.1 74.9 75.4 0.0% - - - -
German 75.5 74.1 74.6 0.4% 75.4 74.5 74.7 0.5% - - - -

Neural-Boxer
(g+s+b)
(strict)

Dutch 71.4 69.3 70.1 3.7% 71.2 69.3 70.0 3.5% - - - -
Italian 75.9 75.1 75.3 0.6% 75.3 74.2 74.6 1.1% - - - -
German 75.3 73.9 74.3 0.7% 74.8 74.0 74.2 1.5% - - - -

These results were obtained after this thesis was handed in. Our assumptions in
the conclusion regarding the performance of neural models for the other languages
were correct. Due to the lack of data, the neural system struggles a fair bit, espe-
cially with only gold data. Recall that UD-Boxer only uses gold training data. A
surprising pattern we see in Table 13, is that UD-Boxer outperforms all neural sys-
tems for Dutch, Italian and German. This happens even when there is quite a lot of
training data available for Neural-Boxer, such as with the models trained on gold,
silver and bronze data. Bronze data might have an effect on this somewhat lacking
performance since the quality of this data is (likely) lower than silver data.
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a.3 transformation rules

a.3.1 Language-neutral transformation rules

These are the literal contents of the main GREW file.
1 %%% Ideas %%%
2 % Maybe combine NOUN -[amod]-> ADJ into single token, example: good- bye
3 % Maybe combine A -[xcomp]-> ADJ1 and A -[xcomp]-> ADJ2 (or more) into single token, example: bright

blue
4 % nummod deprel kan vervangen worden door synset -[Quantity]-> number?
5 % SCONJ as EXPLANATION box? See en/gold/p00/d0801
6

7 %%% NOTES %%%
8 % Make sure to read https://grew.fr/doc/pattern/ and especially the part on edge clauses.
9 % For both the nodes and edges the ’token’ feature is used to store already known DRS components

10 % or defaults that might help to resolve those later.
11

12 import "$$LANGUAGE$$.grs"
13

14 %%% LABELING RULES %%%
15 % Add the token feature to all nodes, this will be used to build up the string required for SBN.
16 % This is done in order to not lose the UD information that rules might use.
17 % Ideally, the token feature is only used in a write (or concat) only manner in the rules.
18 rule add_token_nodes {
19 pattern {
20 N [lemma, !token];
21 }
22 commands {
23 N.token = N.lemma;
24 }
25 }
26

27 % Add the token feature to all edges. This makes sure we’re not losing the deprel information.
28 rule add_token_edges {
29 pattern {
30 E: N -[!token]-> M;
31 }
32 commands {
33 % The initial feature is ’1’ by default, which is the ’deprel’.
34 E.token = "NONE";
35 }
36 }
37

38 % This is not really needed since the mappings can also handle this. This is more of an example of a
39 % direct labeling rule.
40 % Example: en/gold/p05/d1993
41 rule label_adj {
42 pattern {
43 N [upos=NOUN];
44 E: N -[1=amod]-> M;
45 }
46 without {
47 E[token="Attribute"];
48 }
49 commands {
50 E.token = "Attribute";
51 }
52 }
53

54 % Numbers are constants in sbn, this is not the cleanest option, but without a POS tag we ensure that
the

55 % number won’t be converted to a synset. We cannot allow non-leaf nodes to be constants, this results
in

56 % invalid SBN.
57 % Example: en/gold/p01/d2141/
58 rule indicate_number {
59 pattern {
60 N [upos=NUM];
61 }
62 without {
63 N -> *;
64 }
65 commands {
66 del_feat N.upos;
67 }
68 }
69

70 %%% CONNECTING RULES %%%
71 % Connect the Owner / User of something directly
72 % Example: en/gold/p04/d1646
73 rule connect_user {
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74 pattern {
75 USER [upos=PROPN|NOUN];
76 * -[1=nsubj]-> USER;
77 REL: TARGET -[1=nmod, 2=poss]-> INDICATOR;
78 }
79 without {
80 TARGET -[token="User"]-> USER;
81 }
82 commands {
83 add_edge TARGET -[token="User"]-> USER;
84 del_edge REL;
85 del_node INDICATOR;
86 }
87 }
88

89 %%% EXPANDING RULES %%%
90 % Expand a name into an entity synset node, a name edge and the name constant.
91 % Example: en/gold/p04/d1646
92 rule expand_name {
93 pattern {
94 NAME [upos=PROPN];
95 }
96 without {
97 NAME -> *;
98 }
99 commands {

100 % NAME.token = "entity.n.01"; see note above
101

102 add_node NAME_CONST;
103 NAME_CONST.token = NAME.textform;
104

105 add_edge NAME -[token="Name"]-> NAME_CONST;
106 }
107 }
108

109 % Add a speaker nodes split up into ’person-synset’ -> ’speaker’.
110 % Example: en/gold/p04/d1646
111 rule expand_first_person {
112 pattern {
113 SPEAKER [upos=PRON, Person=1];
114 }
115 without {
116 SPEAKER [token="GENDER"];
117 }
118 commands {
119 SPEAKER.token = "GENDER";
120

121 add_node SPEAKER_CONST;
122 SPEAKER_CONST.token = "speaker";
123

124 add_edge SPEAKER -[token="EQU"]-> SPEAKER_CONST;
125 }
126 }
127

128 % Add a speaker nodes split up into ’person-synset’ -> ’hearer’.
129 % Example: en/gold/p05/d2340
130 rule expand_second_person {
131 pattern {
132 HEARER [upos=PRON, Person=2];
133 }
134 without {
135 HEARER [token="GENDER"];
136 }
137 commands {
138 HEARER.token = "GENDER";
139

140 add_node HEARER_CONST;
141 HEARER_CONST.token = "hearer";
142

143 add_edge HEARER -[token="EQU"]-> HEARER_CONST;
144 }
145 }
146

147 % Indicate pronoun to resolve.
148 % Example: en/gold/p05/d2340
149 rule expand_third_person {
150 pattern {
151 PERSON [upos=PRON, Person=3];
152 }
153 without {
154 PERSON [token="GENDER"];
155 }
156 commands {



a.3 transformation rules 61

157 PERSON.token = "GENDER";
158 }
159 }
160

161 % Add a time synset node.
162 % Example: en/gold/p04/d1646
163 rule add_time {
164 pattern {
165 N [];
166 * -[1=root]-> N;
167 }
168 without {
169 N -[token="Time"]-> *;
170 }
171 commands {
172 add_node TIME_SYNSET;
173 TIME_SYNSET.token = "time.n.08";
174

175 add_edge N -[token="Time"]-> TIME_SYNSET;
176

177 add_node TIME_CONST;
178 TIME_CONST.token = "now";
179

180 add_edge TIME_SYNSET -[token="TIMERELATION"]-> TIME_CONST;
181 }
182 }
183

184 %%% COMBING RULES %%%
185 % Combine multiple PROPNs that probably belong together. This is quite tricky since this is very
186 % vunrable to UD parse error or oddities (see example).
187 % Example: en/gold/p65/d1215
188 rule combine_propn {
189 pattern {
190 A [upos=PROPN];
191 B [upos=PROPN];
192 R: A -[1=flat|compound]-> B;
193 }
194 commands {
195 A.token = A.token + "_" + B.token;
196 del_edge R;
197 del_node B;
198 }
199 }
200

201 % Combine phrasal verb particle components. These are often treated as a single synset.
202 % Some common cases include: "cut off", "burn down", "hang up" etc.
203 % Example: en/gold/p00/d1469
204 rule combine_compound_prt {
205 pattern {
206 A [];
207 B [];
208 R: A -[1=compound, 2=prt]-> B;
209 }
210 commands {
211 A.token = A.token + "_" + B.token;
212 % We know it’s most likely a verb at this point.
213 A.upos = "VERB";
214 del_edge R;
215 del_node B;
216 }
217 }
218

219 % Combine multiple NOUNS that are probably compounds.
220 % Example: en/gold/p50/d2408
221 rule combine_nouns {
222 pattern {
223 A [upos=NOUN];
224 B [upos=NOUN];
225 % B < A;
226 R: A -[1=compound]-> B;
227 }
228 commands {
229 A.token = B.token + "_" + A.token;
230 del_edge R;
231 del_node B;
232 }
233 }
234

235 %%% CLEANING RULES %%%
236 % Remove any punctuation that is connected to the root directly. These are the sentence ending

punctuation marks.
237 % Example: en/gold/p04/d1646
238 rule remove_root_punct {
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239 pattern {
240 * -[1=root]-> ROOT;
241 E: ROOT -> N;
242 N [upos=PUNCT];
243 }
244 commands {
245 del_edge E;
246 del_node N;
247 }
248 }
249

250 % Remove nodes that are possibly useless. Ideally this rule is applied *after* all other rules that
might

251 % use the nodes (such as combining node tokens etc.) in order to not lose information.
252 % NOTE: Not sure about PART here since that can also indicate negation or possession, which is

semantically useful
253 % Same goes for CCONJ and SCONJ, for now they are removed, since they often also don’t contribute

anything
254 % and are basically never used as a node on their own.
255 % Example: en/gold/p04/d1646
256 rule remove_unwanted_pos {
257 pattern {
258 N [upos=PUNCT|DET|AUX|ADP|PART|CCONJ|SCONJ];
259 }
260 commands {
261 del_node N;
262 }
263 }
264

265 % Remove the explicit ROOT node.
266 % Example: en/gold/p04/d1646
267 rule remove_explicit_root {
268 pattern {
269 N [];
270 E: N -[1=root]-> T;
271 }
272 commands {
273 del_edge E;
274 del_node N;
275 }
276 }
277

278

279 %%% SPECIAL CASES %%%
280 % This can happen if a rule connects nodes together and later removes some.
281 % If for instance the Owner role gets added, this might introduce a cycle.
282 % This is a trade-off, there is information loss, but at least the output is
283 % expected be a valid DAG. Possibly deal with cases more specifically,
284 % though it is quite rare that this happens.
285 % NOTE: this does not scale, when there are hops between the connecting nodes,
286 % this does not fix it. Probably need to deal with this on the networkx side.
287 % Example: en/gold/p96/d1385 (caused by connect_user)
288 rule detach_cycles {
289 pattern {
290 A: N -> M;
291 B: M -> N;
292 }
293 commands {
294 del_edge B
295 }
296 }
297

298 % Main strat to apply all rules. Ordering is very important here.
299 strat main {
300 Pick(
301 Iter (
302 Seq (
303 Onf(add_token_nodes),
304 Onf(add_token_edges),
305

306 Iter(combine_propn),
307 Iter(combine_nouns),
308 Iter(combine_compound_prt),
309

310 Iter(label_adj),
311

312 Iter(connect_user),
313 Iter(expand_name),
314

315 Onf(expand_first_person),
316 Onf(expand_second_person),
317 Onf(expand_third_person),
318
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319 Iter(add_time),
320

321 Iter($$LANGUAGE$$),
322

323 Iter(remove_root_punct),
324 Iter(remove_explicit_root),
325 Onf(remove_unwanted_pos),
326

327 Iter(indicate_number),
328

329 Iter(detach_cycles),
330 )
331 )
332 )
333 }



a.3 transformation rules 64

a.3.2 Language-specific transformation rules

English

1 %%% English specific rules %%%
2 %%% BOX RULES %%%
3 % Example: en/gold/p02/d1681
4 rule box_negation_det {
5 pattern {
6 N [lemma=no|not|never];
7 * -[1=advmod|det]-> N;
8 }
9 without {

10 P [token="NEGATION"];
11 }
12 commands {
13 del_node N;
14

15 add_node NEGATION_BOX;
16 NEGATION_BOX.token = "NEGATION";
17 }
18 }
19

20 % Example: en/gold/p03/d0823
21 rule box_negation_nmod {
22 pattern {
23 N [lemma=none|nothing];
24 N -[1=nmod|obj]-> *;
25 }
26 without {
27 P [token="NEGATION"];
28 }
29 commands {
30 del_node N;
31

32 add_node NEGATION_BOX;
33 NEGATION_BOX.token = "NEGATION";
34 }
35 }
36

37 % Example: en/gold/p04/d0830
38 rule box_negation_pron {
39 pattern {
40 N [lemma=nobody];
41 * -[1=nsubj]-> N;
42 }
43 without {
44 P [token="NEGATION"];
45 }
46 commands {
47 del_node N;
48

49 add_node NEGATION_BOX;
50 NEGATION_BOX.token = "NEGATION";
51 }
52 }
53

54 % Example: en/gold/p04/d2804
55 rule box_quantifier {
56 pattern {
57 N [lemma=every|everyone|everybody|everything|always|all|whoever|whomever|both|whatever];
58 }
59 without {
60 P [token="NEGATION"];
61 Q [token="NEGATION"];
62 }
63 commands {
64 del_node N;
65

66 add_node NEGATION_BOX;
67 NEGATION_BOX.token = "NEGATION";
68

69 add_node NEGATION_BOX_2;
70 NEGATION_BOX_2.token = "NEGATION";
71

72 add_edge NEGATION_BOX -[token="NEGATION"]-> NEGATION_BOX_2;
73 }
74 }
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Dutch

1 %%% Dutch specific rules %%%
2

3 %%% BOX RULES %%%
4 % Example: nl/gold/p06/d0785
5 rule box_negation_det {
6 pattern {
7 N [lemma=niet|geen|nooit];
8 * -[1=advmod|det]-> N;
9 }

10 without {
11 P [token="NEGATION"];
12 }
13 commands {
14 del_node N;
15

16 add_node NEGATION_BOX;
17 NEGATION_BOX.token = "NEGATION";
18 }
19 }
20

21 % Example: nl/gold/p57/d2423
22 rule box_negation_nmod {
23 pattern {
24 N [lemma=niets|niks|nada];
25 N -[1=nmod|obj]-> *;
26 }
27 without {
28 P [token="NEGATION"];
29 }
30 commands {
31 del_node N;
32

33 add_node NEGATION_BOX;
34 NEGATION_BOX.token = "NEGATION";
35 }
36 }
37

38 % Example: nl/gold/p96/d0945
39 rule box_negation_pron {
40 pattern {
41 N [lemma=niemand];
42 * -[1=nsubj]-> N;
43 }
44 without {
45 P [token="NEGATION"];
46 }
47 commands {
48 del_node N;
49

50 add_node NEGATION_BOX;
51 NEGATION_BOX.token = "NEGATION";
52 }
53 }
54

55 % Example: nl/gold/p36/d2853
56 rule box_quantifier {
57 pattern {
58 N [lemma=iedereen|elk|elke|alle|alles|altijd|iedere];
59 }
60 without {
61 P [token="NEGATION"];
62 Q [token="NEGATION"];
63 }
64 commands {
65 del_node N;
66

67 add_node NEGATION_BOX;
68 NEGATION_BOX.token = "NEGATION";
69

70 add_node NEGATION_BOX_2;
71 NEGATION_BOX_2.token = "NEGATION";
72

73 add_edge NEGATION_BOX -[token="NEGATION"]-> NEGATION_BOX_2;
74 }
75 }
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Italian

1 %%% Italian specific rules %%%
2

3 %%% BOX RULES %%%
4 % Example: it/gold/p09/d1743
5 rule box_negation_det {
6 pattern {
7 N [lemma=non|mai];
8 * -[1=advmod|det]-> N;
9 }

10 without {
11 P [token="NEGATION"];
12 }
13 commands {
14 del_node N;
15

16 add_node NEGATION_BOX;
17 NEGATION_BOX.token = "NEGATION";
18 }
19 }
20

21 % Example: it/gold/p19/d2943
22 rule box_negation_nmod {
23 pattern {
24 N [lemma=nulla|niente|zero];
25 N -[1=nmod|obj]-> *;
26 }
27 without {
28 P [token="NEGATION"];
29 }
30 commands {
31 del_node N;
32

33 add_node NEGATION_BOX;
34 NEGATION_BOX.token = "NEGATION";
35 }
36 }
37

38 % Example: it/gold/p65/d1668
39 rule box_negation_pron {
40 pattern {
41 N [lemma=nessuno|niente];
42 * -[1=nsubj]-> N;
43 }
44 without {
45 P [token="NEGATION"];
46 }
47 commands {
48 del_node N;
49

50 add_node NEGATION_BOX;
51 NEGATION_BOX.token = "NEGATION";
52 }
53 }
54

55 % Example: it/gold/p37/d2571
56 rule box_quantifier {
57 pattern {
58 N [lemma=tutto|tutti|entrambe|entrambi|ogni|ciascuno|qualsiasi];
59 }
60 without {
61 P [token="NEGATION"];
62 Q [token="NEGATION"];
63 }
64 commands {
65 del_node N;
66

67 add_node NEGATION_BOX;
68 NEGATION_BOX.token = "NEGATION";
69

70 add_node NEGATION_BOX_2;
71 NEGATION_BOX_2.token = "NEGATION";
72

73 add_edge NEGATION_BOX -[token="NEGATION"]-> NEGATION_BOX_2;
74 }
75 }
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German

1 %%% German specific rules %%%
2

3 %%% BOX RULES %%%
4 % Example: de/gold/p03/d2800
5 rule box_negation_det {
6 pattern {
7 N [lemma=nicht|kein|keine|keines|nie];
8 * -[1=advmod|det]-> N;
9 }

10 without {
11 P [token="NEGATION"];
12 }
13 commands {
14 del_node N;
15

16 add_node NEGATION_BOX;
17 NEGATION_BOX.token = "NEGATION";
18 }
19 }
20

21 % Example: de/gold/p05/d2383
22 rule box_negation_nmod {
23 pattern {
24 N [lemma=nichts|niemanden|keine];
25 N -[1=nmod|obj]-> *;
26 }
27 without {
28 P [token="NEGATION"];
29 }
30 commands {
31 del_node N;
32

33 add_node NEGATION_BOX;
34 NEGATION_BOX.token = "NEGATION";
35 }
36 }
37

38 % Example: de/gold/p06/d3500
39 rule box_negation_pron {
40 pattern {
41 N [lemma=niemand|niemanden|keiner];
42 * -[1=nsubj]-> N;
43 }
44 without {
45 P [token="NEGATION"];
46 }
47 commands {
48 del_node N;
49

50 add_node NEGATION_BOX;
51 NEGATION_BOX.token = "NEGATION";
52 }
53 }
54

55 % Example: de/gold/p06/d1718
56 rule box_quantifier {
57 pattern {
58 N [lemma=jeder|jedes|jederman|jegliche|alle|alles|stets|beide|immer];
59 }
60 without {
61 P [token="NEGATION"];
62 Q [token="NEGATION"];
63 }
64 commands {
65 del_node N;
66

67 add_node NEGATION_BOX;
68 NEGATION_BOX.token = "NEGATION";
69

70 add_node NEGATION_BOX_2;
71 NEGATION_BOX_2.token = "NEGATION";
72

73 add_edge NEGATION_BOX -[token="NEGATION"]-> NEGATION_BOX_2;
74 }
75 }
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