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A B S T R A C T

Current automatic text simplification research is not very focused on named entities.
These can definitely be a source of difficulty for a reader. A grammatically simpli-
fied sentence with a hard entity can still be difficult to understand. This project
focusses on explaining difficult named entities in texts when it is needed. The follow-
ing question is answered: How can a system decide if named entities in a text need an
explanation? This is done by using an entity linker and knowledge base to retrieve
information about an entity. The decision, if an explanation is needed or not, is
made by using a list of ‘common knowledge’ entities and the context of a given
entity in a text. Human annotators got the same task of making this decision and
agreed in 76% of cases with the system. In conclusion, by comparing the context of
a named entity to information in a knowledge base and by counting entity occur-
rences in a suitable corpus to determine which are common knowledge, a system
can make a decent decision if a named entity needs an explanation or not.

The source code is available at: https://github.com/WPoelman/thesis_is
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1 I N T R O D U C T I O N

Determining the difficulty of a text or sentence is not an easy task. Intuitively we
have some ideas about what makes a text simple or hard. To explain or pinpoint
what causes this, is not as trivial as it might seem. Is text difficulty caused by word
choice, sentence length, topic, structure? Is it a combination of all of the above? As
Shardlow put it in a 2014 automatic text simplification overview article:

Simplicity is intuitively obvious, yet hard to define. (p.59)

This intuition is straightforward for humans, but not for a computerprogram.
Making the decision if a text is difficult or not and what to do about it, can be done
on many different levels. Altering the size of a text, rewriting sentences, restruc-
turing information, replacing difficult terms with simpeler variants to name a few
(Alva-Manchego et al., 2020). One of these levels is explaining difficult parts of a
text. With this approach, the text is not made shorter to decrease the amount of
information, but longer to provide more clarity and increase understandability. Or,
more concisely put by Alva-Manchego et al. in their automatic text simplification
overview article from 2020:

(. . . ) simplifying a text could also involve further explaining complex
terms or concepts. This is not merely replacing a word or phrase for a
simpler synonym or its definition, but to elaborate on the concept in a
natural way that keeps the text grammatical, is meaning preserving, and
is simple. (p.177)

This quote highlights two important challenges of explaining ‘complex terms or
concepts’. First, a resource is needed from which to create or get explanations. Sec-
ond, a decision has to be made which terms are in need of an explanation. To solve
the first problem there are numerous large and open resources (knowledge bases)
that can be used for this. Wikipedia is a great example of a general knowledge base.
For more domain specific knowledge there are also various resources available. The
second problem is harder to solve. To illustrate, this problem has an effect on all
aspects of the previous quote. Every recognized term from a knowledge base could
be explained, this would ‘elaborate on the concept’, but not in a ‘natural way’. There
needs to be a method of deciding when an explanation is needed. This also touches
on the other points from the quote. It is hard to imagine a grammatical or readable
text in which every term is explained. This would lead to the opposite of the goal
of making the text simpler. The question is how a system can make a decision when
an explanation is needed or not.

The scope of this question is too broad. In practical terms, what is considered
a ‘term or concept’? This could be individual words, sentences or even chapters.
The level of detail needs to be such that the term is easy to find in a knowledge
base and has a short and simple explanation. This touches on several natural lan-
guage processing fields, the most useful being ‘entity linking’, which comes close
to the goal here. This field focusses on automatically recognizing entities from
a knowledge base in a given text. This is a good starting point, but knowledge
bases, such as Wikipedia, contain entities that are not suitable for simplifying us-
ing explanations. Take articles for individual years or dates for example. These
most likely do not need explaining and how can a year even be ‘explained’? To
restrict the question, this project focusses on named entities. These include persons,
geographical locations, brands or organizations. Luckily, entity linkers and general
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introduction 2

knowledge bases predominantly target named entities. In automatic text simplifica-
tion research, named entities are also somewhat neglected. A good opportunity to
try something new. The main research question is the following:

How can a system decide if named entities in a text need an explanation?

To make that decision, two factors have to be taken into account: context & com-
mon knowledge. A named entity can be explained by the context of the sentence
or text it occurs in. Some entities are not explained in texts because they are consid-
ered to be common knowledge. A named entity such as ‘Amsterdam’ is generally
not explained in texts. Two sub questions address these factors:

1. How can context be captured and used to decide if a named entity
needs an explanation?

2. How can common knowledge be captured and used to decide if a
named entity needs an explanation?

To answer these questions, a system was made that generates explanations for
named entities, makes a choice if the explanation is needed and annotates an input
text with the needed explanations. The system also produced versions with and
without explanations of all sentences in which entities were recognized. These were
shown to human annotators who had to make the same ‘needed’ or ‘not needed’
decision.



2 B A C KG R O U N D

This chapter outlines where the current project ties into existing ‘automatic text
simplification using explanations’ research. Next, the role of named entities & entity
linkers is described. Finally, some disambiguation methods used by entity linkers
are explained to illustrate the approach of dealing with the context of an entity in a
text.

2.1 simplifying using explanations
As stated in the Introduction, explaining difficult terms is one of many ways to
simplify a text. Some research has been done, but “this is an important research
area in SS (sentence simplification) where limited work has been published” (Alva-
Manchego et al., 2020). Two fields in this area will be highlighted: healthcare and
reading assistance.

2.1.1 Healthcare

Healthcare is a field where hard terms contributing to the difficulty of a text is
clearly visible. A decent amount of research has gone into explaining difficult med-
ical terms. The systems developed for this often have a secondary screen or inter-
face showing the explanation (Alfano et al., 2020; Alsheref and Fattoh, 2020; Qenam
et al., 2017). A user needs to explicitly point out to the system which term they
want explained. These systems use vocabularies of medical terms with so called
‘consumer explanations’ to find an explanation for a given term. These explana-
tions are manually created by experts. This research and the systems are highly
domain specific and have some drawbacks. The first being the fixed nature of the
vocabularies. When a new term is added, the vocabulary needs to be updated. An
expert needs to manually create a new explanation for that term. The same problem
applies when updating existing terms with new explanations. This means that the
system is quite hands on when it comes to extendibility and limited in the terms it
can find.

The current project, while not applied to healthcare specifically, uses Wikipedia
as a general knowledge base. The advantage of this, is that the system retrieves
information in real time. At the moment of generating the explanation, the in-
formation about an entity is as recent as the last update on that entity’s article.
Another advantage is that, theoretically, all entities in the Wikipedia database can
be explained. This is, however, limited by the recognition of those terms and the
language used. This project is mainly limited by the entity linker. This real time
approach is more extendible than the fixed vocabulary. The downside of using
Wikipedia is that the quality of the information is not guaranteed. Expert explana-
tions in the vocabulary approach are likely more consistent than the open editing
nature of Wikipedia.

Aside from the vocabularies, the systems in healthcare use an all or nothing
approach. Both the systems that use an external screen for the explanations and the
systems that insert them into the source text overlook an essential part of explaining
a term, which is context. The external method somewhat solves this by letting the
user choose what they want explained. If the user understands the term, they
simply do not click on it. This is a convenience of the design, rather than a solution
to the problem. If a term gets an inline explanation, but gets naturally explained
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2.2 named entities 4

in the next sentence, it arguably makes the text more confusing. The point of the
current project is to explain a term only when it is needed. If a term gets explained in
context, the system should be smart enough to not explain it and vice versa. What
is considered ‘context’ will be clarified later.

As mentioned, a lot of the findings in the healthcare text simplification field
are quite domain specific. Some of the discoveries are more broadly applicable
though, such as a study from Gu et al. from 2018. This study looked at the use of
parentheses when providing explanations in texts. The main experiment consisted
of inserting the explanation in the text and surrounding the difficult term with
parentheses, or vice versa. They showed that for already simple texts, it is best
to enclose the explanation with parentheses and in difficult texts, the other way
around. The current project uses online news articles, which are not considered to
be difficult texts (more on this later). This is why the system in the current project
encloses the explanations in parentheses behind the term that needs to be explained,
following the recommendations of Gu et al..

2.1.2 Reading assistance

There have been some attempts at generating explanations for reading assistance. A
study done by Watanabe et al. from 2010 looked at providing explanations for terms
in web texts through the use of a browser plugin. The user could click on terms
and a highlighted popup with an explanation would appear. Something similar
has been done by Eom et al. in 2012 to disambiguate words for struggling readers
and by Azab et al. in 2013 to help people with learning a foreign language. All
three studies have some major drawbacks. They use tools or interfaces that need
to be open outside of the actual text during reading. This arguably hinders the
reader as they need to switch to the system and back to the text while reading.
That ‘break’ in the reading process could result in needing to reread a section or
needing to find where they were. While these seem like minor inconveniences, the
tools are aimed at struggling readers. Any additional obstacles only make reading
harder. Additionally, the systems are reliant on user input, usually in the form
of clicking on text elements. This also interrupts the reading process. Finally, as
with the healthcare systems, there is no regard for context, it is all or nothing. The
current project aims to provide explanations for named entities when needed, based
on context and common knowledge. Explanations are inserted into the original text
and sourced from a general knowledge base. No external system needs to be open
alongside reading the text.

2.2 named entities
In current automatic text simplification research, named entities are somewhat ne-
glected. In the previously mentioned paper by Alva-Manchego et al. from 2020,
for example, a sentence splitting model is presented that “strips off named entities
and properties” (p.164). When replacing difficult words with simpeler synonyms,
named entities are often discarded or replaced by a dummy word in order to reduce
the size of vocabularies (Nisioi et al., 2017; Alva-Manchego et al., 2020).

Considerable research is dedicated to shortening sentences or grammatically
restructuring texts. These approaches are important when simplifying, but a sim-
plified sentence with difficult terms is not necessarily simple. Named entities are
a good candidate to simplify because they can generally be explained in a couple
of words. Take for example a recent news article from the University of Groningen
about Ezinge1. In the article there is no clear explanation of what Ezinge is. This is
assumed to be common knowledge and for most people from northern provinces of

1 https://www.rug.nl/news/2020/10/ezinge-revisited
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the Netherlands, this would probably be true. This is, however, not guaranteed and
a simple inline explanation in the first sentence could help with understandability:

Dutch: De opgraving in de wierde van Ezinge (Gronings dorp), tussen
1923 en 1934 uitgevoerd door prof. Albert Egges van Giffen, behoort
tot de bekendste opgravingen in de geschiedenis van de Nederlandse
archeologie.
English: The excavation in the Mound of Ezinge (village in Groningen),
carried out between 1923 and 1934 by Prof. Albert Egges van Giffen, is
one of the most famous excavations in the history of Dutch archeology.

Named entities themselves are a large research area within natural language
processing. Entity linking, for example, looks at recognizing & disambiguating
named entities in a text and linking them to a knowledge base (Shen et al., 2015;
van Hulst et al., 2020). All these areas are important for the current project. One
of the main components of the system is an entity linker. Entity linkers are mostly
used to assist components of information retrieval systems (Delpeuch, 2019; van
Hulst et al., 2020). General entity linkers have not been used in text simplification
applications using explanations. The discussed healthcare systems do link a term
to an explanation, but they do not use a general knowledge base. Disambiguation is
also rarely needed in those systems. Some of the reading assistance systems do use
a form of entity linking, but there the system does not need to find the entities in
the text, the user does that by clicking.

Current state of the art entity linkers use a variety of knowledge bases and ap-
proaches. For the current project a Dutch, pre-trained entity linker is needed. There
are some recent attempts at Dutch entity linkers2, but they are not as well main-
tained or recent as their English counterparts. Pre-trained systems for Dutch are
even harder to come by. Additionally, some are too domain specific, targeting only
historical documents for example. For this reason, the system used in this project is
DBPedia’s Spotlight with their 2016 Dutch language model, created by Daiber et al.
in 2013 (updated in 2016). This is not a state of the art system, but it provides a
clear and usable API and comes with a pre-trained model. Spotlight provides entity
recognition, disambiguation and linking using DBPedia as a knowledge base. The
main knowledge base this project uses is Wikipedia. DBPedia provides methods
to convert to Wikipedia entries. More detailed information on Spotlight will be
provided in the Method chapter.

2.3 inspiration from disambiguation methods
The disambiguation methods in entity linkers give a good starting point of how to
look at the context of a named entity. Disambiguation involves looking at which
variant of an entity is the right one given the context. For example, the sentences ‘the
Miami Heat beat the LA Clippers last weekend’ and ‘the Miami heat was tough for farmers
this year’ both contain the possible named entity ‘Miami heat’, thus being ambigu-
ous. When looking at the context, the first sentence has another basketball team in
it. When a system has access to a knowledge base, it can use that information to
guess that the first one is probably referring to the basketball team and the second
to weather conditions.

This process is often done by providing a confidence score of which variant
the system thinks is the closest. There are many disambiguation methods and
techniques. The current project has been influenced by methods that leverage a

2 This project started with experiments using:
- DAC from the Dutch National Library https://github.com/KBNLresearch/dac
- An entity linker for historical Dutch articles from the VU Amsterdam https://github.com/cltl/
entity-identification-from-scratch
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knowledge base to figure out what is happening in the context of an entity. Specif-
ically, the current system looks at how different the context is to information in the
knowledge base.

Looking at that context can be done in several ways, such as word vectors (em-
beddings), counting previous mentions or using the ‘relatedness’ of Wikipedia links
(Delpeuch, 2019; Ma et al., 2019; van Hulst et al., 2020). Disambiguation algorithms
and methods often do not use long form ‘semantic’ information from a knowledge
base. They use data that allows for graph calculations or to enhance features of an
entity (Rao et al., 2013). This data is often used as machine learning features. These
include: categories, identifiers, edges of related entities in graph representations
or popularity. There is, however, a lot more information in knowledge bases that
could be used in analyzing context. Take Wikipedia for example, short descriptions,
summaries, even full articles provide a lot of information. The system in the cur-
rent project uses this type of information to make the decision if an explanation is
needed.

In a paper by van Hulst et al. from 2020, they used special Wikipedia2Vec word
and entity embeddings. These encoded word embeddings as well as Wikipedia
metadata. A context window of 50 words surrounding an ambiguous entity was
used. This context was transformed to embeddings using Wikipedia2Vec and simi-
larity was calculated between the context and entity embeddings. Other steps were
used, but this particular method can also be used in deciding if an entity needs
an explanation. In some way, disambiguation already gives information about how
well the entity ‘fits’ in its context by using embeddings. This is not the same as ex-
plaining the entity in the context, but it does provide a starting point. The current
project uses a context window consisting of the sentence in which the entity occurs
and the sentences left and right from it. The context window is described further in
the Method Chapter.

The current system uses the first sentence of a Wikipedia abstract from the
knowledge base for comparison. This is done in order to keep the size of the context
window relatively the same as the size of the information from the knowledge base.
This also generally provides the most information about an entity in a short and
succinct way. The abstract, along with the description of the entity, get transformed
into word embeddings and compared to the context, similar as what van Hulst et al.
did. When this information from the knowledge base is different enough from the
context, an explanation is needed. The specific approach and how the system deals
with common knowledge is discussed in the Method Chapter.

The following chapters explain the data used in the project, the validation pro-
cedure, the specifics of the system and finally the results and conclusions.



3 DATA A N D M AT E R I A L

3.1 collection

3.1.1 Dataset

The corpus used for this project is the DutchWebCorpus, created by Wietse de Vries.
This dataset consists of all online news articles from 2015 to mid 2019 from four
major Dutch news outlets: NOS, NU.nl, de Telegraaf & de Volkskrant. The total
number of articles is roughly 990.000, totalling more than 270 million words. This
dataset is chosen because news articles contain a large number of named entities.
Online news articles are also of suitable length. The system uses a decently sized
context window to make the decision. Named entities in short texts, such as tweets,
generally do not have sufficient context. News articles are also suitable because of
their textual structure. Since they are not that long, they have to be compact and
concise with presenting information. If the author thinks a named entity needs
an explanation, it has to be done quite close to the first time that named entity is
mentioned. Simply because there is not enough space to do this in a later chapter
for example. Furthermore, the structure generally does not use distant explaining
of terms. With books or long form articles, footnotes or registers can be used to
explain complex terms ‘far away’ from the sentence they occur in. Online news
articles do not have this luxury. The dataset is used for two purposes:

• Extracting information about all named entities to capture which named enti-
ties are common knowledge.

• To annotate texts with explanations and present the intermediate results to
validate the choices of the system.

3.1.2 Entity linker

As mentioned in the Background Chapter, the entity linker used is DBPedia’s Spot-
light. This is by no means a state of the art entity linker, but this is not a big issue
for the current project. The main focus is the decision if a named entity needs an
explanation, not if every entity is recognized. The Method chapter elaborates on
the configuration and use of Spotlight.

3.1.3 Knowledge base

The knowledge base used is Wikipedia. For the purposes of this project, it is a good
and large resource for general information about named entities. It also has an open
API which serves two functions:

• Retrieving an explanation for a given entity.

• Retrieving information about the entity to compare its context to.

7
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3.2 annotation
In the project there are two steps where texts are annotated, by the system and by
human annotators.

3.2.1 System

The system receives an input text and decides which named entities need an ex-
planation. When needed, the system inserts the explanation between parentheses
behind the entity in question. The final output text is the original text with expla-
nations. During this process, it produces detailed intermediate, annotated data. It
creates a version of the sentence with and without the explanation for all named
entities it recognized. These include the context sentences the system also used for
the decision.

3.2.2 Human annotators

The human annotators got to see two versions of the entity in context, with and
without explanation. Figure 1 shows an example of this. The annotators got in-
structions to choose the version which makes the text more understandable and
‘simple’. In other words, they needed to choose the one where the explanation was
needed and supported the understanding of the text. The labels used were ‘with
explanation’ and ‘without explanation’. The full instructions can be found in the
validation.html file in the GitHub repository.

Figure 1: Example of what the human annotators needed to choose between.

3.3 processing
The final data gets processed and analyzed in several steps. First, the output of
the system is analyzed to find interesting examples and inaccuracies. This is done
by looking through the output texts, the scores assigned to the decisions and the
intermediate output of the system. Second, the human annotated data is compared
with the system annotated data. This consists of calculating the inter-annotator
agreement for the human annotators and the agreement of the system and human
annotations.



4 M E T H O D

This section first explains the approaches used for the sub questions. Next, the
individual components of the system are clarified, along with a full walk through
of the system. Finally, the validation process is outlined.

4.1 context
The first sub question:

How can context be captured and used to determine if a named entity
needs an explanation?

A named entity can be explained in the sentence it occurs in or in the surround-
ing text. As mentioned, in news articles this explaining is often close to the first
mention of the entity. News articles do not have the length to explain an entity later
on. Because of this, the context window used is the sentence the entity occurs in
(S = sentence), one sentence before that (L = left sentence) and one after (R = right
sentence). L and R do not always exist if S is the first or last sentence of an article.

The system needs compare the context (LSR) to something to decide if an expla-
nation is needed. This is where the knowledge base comes into play. The following
information about the entity is collected from the Wikipedia API:

• The description field (D) • The abstract field (A)

D is a short description of the entity. For example, Amsterdam has ‘capital of
the Netherlands’ as its description. The project uses the Dutch version of Wikipedia,
but the approach is not language dependent. D is used in evaluating the context
and also serves as the explanation that is inserted into the text.

The abstract is (a shortend version of) the first paragraph of the Wikipedia arti-
cle about the entity. Here, the system only selects the first sentence (A). This is done
because the first sentence of a Wikipedia article generally presents the most impor-
tant information about the topic in a compact and direct way. For the purposes of
this project, A can be considered the longer and more detailed version of D.

D and A are both used because, while D can give a decent amount of information
about the entity, it is limited in scope. A gives a lot more information and casts a
wider net of how the entity could be explained in the context. The larger amount
of information in A does along the risk of noise, more on that later. Next, some
pre-processing is done for L, S, R, D and A:

• Stop words are removed

• Mentions of the named entity are removed

When ‘context’ is mentioned in this section, it refers to a combination of the
cleaned versions of L, S & R. From now on D and A also refer to their cleaned
versions. This cleaning is done in order to prevent ‘tainting’ the similarity between
L, S & R and D & A. Stop words can wrongly make it seem like two very different
sentences are quite similar. The entity is removed because it says nothing about it
being explained, it is not part of the ‘context’.

9
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Next, L, S, R, D & A are converted to word embeddings using the large Dutch
language model (nl_core_news_lg) from Spacy1. Spacy uses FastText (Bojanowski
et al., 2016) for their word embeddings. These are trained on web texts and Wikipedia,
which is conveniently appropriate. In Spacy terms, L, S, R, D & A are Spans of
Tokens, which roughly means a collection of words. These Tokens contain the
word embedding vector for themselves and Spans can access these.

Finally, the similarity between the context and D & A is computed and a score
is assigned. The built in Spacy method similarity on Spans is used. This method
calculates the cosine similarity of the average of the word vectors in the two Spans

that are being compared. The advantage of using this method is that it captures a lot
of semantic information. This means that word order, synonyms or structure do not
matter that much. It is all captured quite well by the individual word embeddings
and the average of those embeddings. For example, if the entity is ‘Washington
D.C.’, S is ’city America’ and D is ’capital USA’, the similarity between S and D is
0.63.

Calculating the similarities is done in pairs, consisting of an item from the con-
text and D or A. These get summed for D and A and averaged to the number of
items in the context. As mentioned, L and R might not exist and this deals with the
possible difference in context length. Finally, a weight is assigned to the average
similarity of D and A. This is done because (the uncleaned version of) D is inserted
into the text. If that similarity is high, it is likely that the entity is explained in
the context. A contains more information and is thus more prone to noise having
an effect on the similarity, even when stop words are removed. With some exper-
imentation the final weights are 0.7 for D and 0.3 for A. The sum of these is the
final score and a threshold of 0.5 has been used. This means that the context is
not similar enough to D and A with a score of 0.4. The entity, therefore, requires an
explanation. With a score of 0.6, the context is similar enough to D and A. The entity
is likely already explained in the context and does not need an explanation. The
pseudocode in Algorithm 1 shows the process of calculating the score with all three
items present in the context.

Algorithm 1 Pseudocode for producing similarity score

1: contextItems = [L,S,R]
2: knowledgeItems = [D,A]
3:
4: for contextItem = [L,S,R] do
5: for knowledgeItem = [D,A] do
6: x = average of word vectors contextItem
7: y = average of word vectors knowledgeItem
8:
9: Compute cosine similarity of x & y

10: end for
11: end for
12:
13: avgD = Sum similarities grouped by D / length of contextItems
14: avgA = Sum similarities grouped by A / length of contextItems
15:
16: finalScore = (0.7 ∗ avgD) + (0.3 ∗ avgA)

1 https://spacy.io/models/nl#nl_core_news_lg
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4.2 common knowledge
The previous method tries to capture knowledge about the entity inside the text
to decide if the explanation is needed. That decision is fine if the entity gets ex-
plained enough in the context window. When an entity does not get explained
enough, however, the system would always decide to insert the explanation. This
does not take the reason for not explaining an entity into account, which often is
common knowledge. The previously mentioned example of Amsterdam illustrates
this. Especially in news articles, this entity can be considered common knowledge.
Something similar can be said about large sports clubs, celebrities, countries, world
leaders, artists, brands and so on. The approach to tackle the second sub question
is explained here.

How can common knowledge be captured and used to decide if a named
entity needs an explanation?

Since the dataset contains almost a million recent news articles, spanning almost
four years, from four different sources, it is a suitable place to look for common
knowledge. To 100% decide if a named entity is considered ‘common knowledge’,
is almost impossible since it dependens on a lot of different factors.

The method used in this project is the straightforward approach of counting all
occurrences of named entities. This is done using the Spacy NER (named entity
recognition) model, also from nl_core_news_lg. This model does not have state
of the art performance, but is good enough for the purposes of this project. The
process of counting was done by running the entire corpus of roughly one million
articles through this NER model and keeping a count of all entities it encountered.
The entities were normalized to all lowercase to make the count more accurate. This
resulted in a dictionary of 1.826.103 unique entities. The model was not restricted
in categories it was allowed to find. This included entities such as dates and per-
centages. This was done on purpose since the approach of the other components
was not finalized at this point. Categories other than named entities might have
been useful as well. The resulting dataset has been added to the GitHub repository
of this project2. It took a long time to create and might be useful for other projects.
As an illustration, Table 1 shows the ten most common entities and their counts.

Table 1: Top ten most frequent entities in the DutchWebCorpus

Lowered entity Occurrences
twee 353.610

eerste 329.076

nederland 278.561

nederlandse 200.816

amerikaanse 187.679

drie 171.847

tweede 148.224

amsterdam 135.706

één 130.717

vrijdag 106.078

Next, a cutoff point had to be chosen for when an entity was considered ‘com-
mon knowledge’. After experimenting, the cutoff was set at the top 1% most com-
mon entities. This created a list of 18.261 entities, with the least frequent entity
occurring 118 times. If the system encounters an entity from that top 1%, it knows
it does not need to explain it. Entities are first lowered before checking if they are
present in the list3. In the support folder of the source code, the scripts for creating
this list are included. Another cutoff point can easily be chosen.

2 The files: all_entity_counts.csv & all_entity_counts.pickle
3 A Python set is used in practice for efficiency, but a ‘list’ is easier to imagine here.
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When looking through the list, the following categories of named entities are
very common: cities, countries, athletes, world leaders, technology and clothing
brands, artists and large companies. This captures quite a lot of common knowl-
edge. The only ‘type’ of named entity that is not captured well with this method,
is historic figures / events. These generally do not occur in news articles, unless
a museum or something similar is mentioned. In this project the same dataset is
also used for annoting, common knowledge from the DutchWebCorpus is therefore
captured well enough. This method is specific to a corpus and use case and might
not be generalizable to other texts.

4.3 system components
This section will provide a walk through the system, starting with an article from
the corpus as input.

The article text first gets sent to the entity linker Spotlight, which is configured
to look for names, organizations, persons and places4. Spotlight uses a confidence
value between 0 and 1 for how sure it is about a found entity. After some experi-
mentation, the allowed confidence for this project has been set at 0.4. This might
seem low, but in testing some obvious entities, such city names, were ignored. From
Spotlight a list of all recognized entities is returned with a DBPedia URI and the
index of the entity in the text.

The URI gets translated to a Wikipedia title. DBPedia provides conversions
for this and a cached lookup is created before the system is ran. With this title the
system retrieves the description (D from previous section) and abstract (A) from the
Wikipedia API5. The response from Wikipedia gets cached in an effort not to ‘abuse’
the API. The entity ‘Amsterdam’ alone would create more than 150.000 requests
without caching if all articles were annotated.

If the previous steps were successful, the decision is made if an explanation is
needed. First, the system checks if the entity is in the ‘common knowledge’ list from
section 4.2. If that is the case it returns a score of 1. If not, the system calculates the
score using the context method explained in section 4.1. Next, the score is compared
to the threshold of 0.5. If the score is higher than the threshold, the explanation is
not needed. This is also why ‘common knowledge’ entities get a score of 1.

Next, the explanation gets inserted behind the entity in parentheses into a copy
of the original text, if needed. Finally, the annotated output text is produced. Dur-
ing the entire process, metadata is saved which is used for the validation task and
to analyse what the system is doing. This metadata, per entity, consists of:

• The score

• The reason for the decision (common knowledge or context)

• The context window with and without explanation

• A version of the context window with the explanation highlighted

• The abstract (A)

• The explanation / description (D)

The final output is a file with the input text, output text and lists of annotated &
ignored entities. The lists consist of the above mentioned metadata per entity.

4 Specifically the following DBPedia types: DBpedia:Name, DBpedia:Organisation, DBpedia:Person and
DBpedia:Place

5 https://nl.wikipedia.org/api/rest_v1/#/Page%20content/get_page_summary__title_
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4.4 validation process
In the corpus there are 20 ‘raw’ text files with a large number of articles in them.
An entire raw file of the corpus was ran through the system to generate a decent
amount of output data. A file was randomly choses from those 20, resulting in
12.txt, consisting of 51.558 articles. If an article did not have entities (or Spotlight
did not recognize any) it was not added to the output. The final output consists
of 36.245 articles. From these, a random selection for validation was made. The
distribution of that selection is shown in Table 2.

Table 2: Distribution of sample sentences.

With Without Total
Context 141 38 179
Common knowledge n.a. 180 180
Total 141 218 359

There are no samples of ‘common knowledge’ & ‘with’ since common knowl-
edge only filters out entities that do not need explanations. In other words, a com-
mon knowledge entity never receives an explanation.

These samples were inserted in an database, along with some columns for keep-
ing count of validations. A simple API was created to get a random entity from the
database which has less than two validations. It also stored the choice of ‘with’ or
‘without’. As shown in Figure 1, people got shown the entire context window with
and without explanation.

A page for the validations was made and both the page and API were put live.
The link to the page was shared with friends, family and colleagues.



5 R E S U LT S A N D D I S C U S S I O N

This chapter presents some interesting findings from the system’s output data. This
will provide some insight in good elements of the system and areas of improvement.
The second part presents the human annotation results and how they compare to
the decisions of the system. When looking at the results, two baselines can be
considered for the task:

1. Explain all entities 2. Explain no entities at all

The first becomes an unreadable mess, the opposite of the goal of making texts
more understandable and simple. The second baseline ignores the possibility of
entities being difficult or, from another point of view, considers all named entities
‘common knowledge’. Of course there can be entities that are difficult or hard to
understand in a text. To consider all named entities common knowledge is too large
of a generatization and requires nuance. For both baselines, there is an approach in
the middle and the results of the system show that.

5.1 general observations
The majority of the system’s output seems correct in terms of accuracy of the entity
linker and the quality of the explanations. There were some strange outliers and
mistakes.

Sometimes the description or abstract field was filled with the data of a Wikipedia
disambiguation page. This is due to wrong DBPedia to Wikipedia conversions. This
was a rare occurrence and came to light when one of the human annotators emailed
about it. These errors are quite detrimental to the system since it propagates to all
components. The description and abstract give nonsense information in that case,
which causes a wrong assesment of the context. The explanation itself is also wrong,
which makes the text more confusing. The system did have measures in place to
filter out bad Wikipedia results. Checks such as skipping entities if the description
or abstract were empty, but this type of error also needs filtering.

Some entities were wrongly recognized by the entity linker. The Dutch past
tense of open is opende, which is also the name of a village in the Netherlands. This
one was particularly often wrongly recognized. This ties into the same weakness of
the system as the previous error. When an entity gets wrongly recognized or the
accompanying information in the knowledge base is wrong, the system falls apart.

These errors are unfortunate, but a positive point from all this is that the sys-
tem, theoretically, improves when the external parts improve. Better entity linkers
translate to more entities, better accuracy and better disambiguation. Higher qual-
ity knowledge bases mean better explanations and abstracts. Both help to make the
system perform better.

Apart from the errors, the system did a lot right. When reading through the
output sentences, ‘common knowledge’ seems to be captured surprisingly well for
such a simple approach. Most of the ignored ‘common knowledge’ entities truly
seem obvious. The context part of the system also worked quite well, but is more
difficult to judge at a glance since it is so text dependent.

An example of the system deciding an explanation is not needed, based on
context:

14
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Context: "In Callantsoog in de provincie Noord-Holland heeft

vrijdagavond een grote uitslaande brand gewoed in drie

grote bollenschuren. Daarbij zijn geen slachtoffers gevallen."

Entity: "Callantsoog",

Explanation: "plaats in Noord-Holland",

Extract: "Callantsoog is een dorp aan de Noordzee,

in de gemeente Schagen in de provincie Noord-Holland.",

Score: 0.5329768361773242,

The score is higher than the threshold of 0.5 and there are indeed several indica-
tors that this entity does not need an explanation. Both the description and abstract
mention ‘Noord-Holland’, which also occur in the context. The abstract mentions
‘provincie’, which is also present in the context. This example also indicates an area
of improvement. The score is relatively low for how similar the description and
abstract seem to the context. The description mentions ‘plaats’ and nothing similar
is present in the context. This could be the reason for a relatively low description
score, which is amplified by the high weight (0.7) it gets. It might have been better
to restrict the context window for the description to more accurately account for
this.

An example of the system deciding an explanation is needed, based on context:

Context: "Wie nog een leuk optrekje voor de aankomende zomervakantie

zoekt, kan nu de villa van Michael Douglas op Mallorca kopen. De

aanstaande koper dient wel over een gevulde portemonnee te beschikken,

want de acteur zet zijn huis in Valldemossa te koop voor 32,5 miljoen

dollar. Dit meldt Variety."

Entity: "Valldemossa",

Explanation: "gemeente in Majorca",

Extract: "Valldemossa is een gemeente in de Spaanse provincie en

regio Balearen met een oppervlakte van 43 km.",

Score: 0.25121903982206717,

This named entity is not considered common knowledge. It is also not explained
in the context that Valldemossa is a municipality (gemeente). The explanation does
provide extra, possibly useful, information. From the context you know the entity
is a geographical location, but not exactly what it is. This example does show a
weakness of the knowledge base, the writer uses the more common spelling ‘Mal-
lorca’, while the knowledge base uses ‘Majorca’. In this case this is not such an issue
and with well trained word embeddings, these two should be very similar (Spacy
reports a similarity of 0.75). Interestingly, the system found the named entities Mal-
lorca and Michael Douglas as well in this same text and considered them common
knowledge. ‘Variety’ was not found, this could be due to it not being recognized by
Spotlight or not having the required Wikipedia information.

5.2 validation
From the 359 output samples, 255 sentences were annotated, 48 of those were anno-
tated by two annotators for a total of 303 annotations. The link for the annotation
page was distributed among friends, family and colleagues. No personal informa-
tion was collected about these annotators. It was not needed and the task was made
to be as simple and straightforward as possible. This was done in an effort to get
more annotations. All annotators are native Dutch speakers and the estimated age
range is between 17 and 56 years old.

The inter-annotator agreement was 0.402, which is mediocre. This could be due
to the relatively low number of double annotations or because there were some
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errors in the data. One notable error that slipped through the cracks is the previ-
ously mentioned disambiguation page information. Another reason might be some
surprising or ‘suspicious’ annotations that indicate some annotators not taking the
task seriously, not understanding the task or something else. Some examples of
these ‘suspicious’ annotations are the following, where the annotator thought an
explanation was needed:

• Eindhoven

• Amsterdam (3x)

• Emmen

• Arnhem

• Canada

• ProRail

• Apple

• Geert Wilders

• Donald Trump

• Femke Halsema

Maybe the task was too easy and people were just clicking the same button over
and over again. It is a bit of a shame that a portion of the annotations is not that
great, but there are still enough interesting findings. Table 3 shows the distribution
of the annotated sentences.

Table 3: Distributions of system choices of annotated sentences.

With Without Total
Context 58 17 75
Common knowledge n.a. 180 180
Total 58 197 255

The ‘common knowledge’ category only determines ‘without’ explanation as it
skips the entity if it occurs in the list. If it is not in the list, the entity goes to the
‘context’ part of the system. These sentences were randomly selected. The number
of sentences where the system decided ‘without explanation’ is a lot higher. This is
due to more of those types in the original output. In hindsight, this split could have
been more balanced.

The total distribution of what category the annotators chose is 125 ‘with ex-
planation’ and 178 ‘without explanation’. This is a surprisingly high number of
occurrences where the explanation was needed. This might tie into the suspicious
annotations as those were also in the ‘with’ category.

Table 4 shows how many of the annotations labeled a sentence the same as the
system. Sentences without human annotations are left out.

Table 4: Human and system agreement.

With Without Total

Context 44
58 (76%) 10

17 (59%) 54
75 (72%)

Common knowledge n.a. 141
180 (78%) 141

180 (78%)

Total 44
58 (76%) 151

197 (77%) 195
255 (76%)

These results show the system and the human annotators are in decent agree-
ment overall. Of all annotated sentences, the system and annotators agreed in 76%
of cases. This shows that, even with the possible suspicious or bad annotations
in the ‘with’ category, the system performs decently. The agreement between the
system and annotators is worst when the system decides that an explanation is not
needed based on context. This could be due to the relatively low number of anno-
tated sentences in that category (17). It could also be due to the system giving the
sentence too high of a score when this is not justified. Here are two examples of the
‘context & without’ category where the system and annotators disagreed:



5.2 validation 17

Context: "Gezinsuitbreiding voor Jessica Simpson en haar man

Eric Johnson. Dinsdag zette de zangeres hun derde kindje

op de wereld.",

Entity: "Jessica Simpson",

Explanation: "Amerikaans zangeres",

Extract: "Jessica Ann Simpson is een Amerikaanse zangeres en actrice.",

Score: 0.568518963445846,

The context mentions that Jessica Simpson is a singer (zangeres) and this is
repeated in both the explanation and abstract. The explanation adds that she is an
American singer, which might be why the annotator thought it could be necessary
to explain it.

The next example shows another disagreement between the system and annota-
tor in the ‘context & without’ category. It also includes an interesting quirk of the
knowledge base:

Context: "De IJslandse maatschappij is niet de enige

vliegtuigmaatschappij die de laatste maanden in zwaar

weer is geraakt. Onder meer het Belgische VLM, het

Duitse Germania en de Britse Flybmi moesten de

deuren sluiten."

Entity: "VLM",

Explanation: "luchtvaartmaatschappij uit Verenigd Koninkrijk",

Extract: "VLM Airlines was een Belgische luchtvaartmaatschappij",

Score: 0.5997754807602497,

‘Airline company’ (vliegtuigmaatschappij) is mentioned in the context, which
also occurs in a slightly different form in the abstract and explanation as ‘lucht-
vaartmaatschappij’ (similarity of 0.95). An interesting quirk of the knowledge base
is that the explanation states that the entity is Belgian, but the extract states British.
Both are not false, but not the whole truth either. VLM was originally founded in
Belgium, but was later purchased by a British airline company. This shows how
tricky the quality and accuracy of a knowledge base can be for making the decision.
In this case, the system also recognized that Belgian (Belgische) was both in the
context and sentence. The decision to not explain the entity seems justified.

All disagreements in the ‘context & without’ category have a score between 0.503

and 0.599. They hover just around the threshold of 0.5. Some mistakes are to be
expected that in the area.

When looking at the ‘common knowledge & without’ category, the system and
annotators agree 78% of the time. This is quite high and shows that the system
pretty accurately captures ‘common knowledge’ entities. This is, again, highly de-
pendent on the corpus and might not translate well to texts outside of it.

Finally, the ‘context & with’ category shows the system and annotators agreeing
76% of the time. This is a decent result and this category also has the highest
number of disagreeing annotators. This shows that it is not as black and white to
decide if an explanation is needed or not. An interesting example of human and
system disagreement in the ‘context & with’ category:

Context: "Het Britse muziekduo Lighthouse Family heeft na achttien

jaar stilte nieuwe muziek aangekondigd. Hun comebacksingle"

Entity: "Lighthouse Family",

Explanation: "Britse band",

Extract: "Lighthouse Family (1993-heden) is een Britse muziekgroep,

gevormd door Tunde Baiyewu (zang) en Paul Tucker (keyboard).",

Score: 0.24097628545364733,

The system gives a surprisingly low score considering ‘muziekduo’, ‘band’ and
‘muziekgroep’ are very similar. This could be due to the strange cutoff point of the
last sentence in the context. In the full text, it is the following:
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Hun comebacksingle My Salvation gaat donderdag op BBC Radio 2 in
premiere, zo hebben zanger Tunde Baiyewu en toetsenist en producer
Paul Tucker bekendgemaakt.

This shows that all parts of the system can make mistakes. In this case it was the
sentence splitting algorithm of Spacy making a mistake. This resulted in a strange
context sentence, which resulted in a low score. When the correct sentence is fed
to the system, it gets a score of 0.48. This is a lot more understandable, but still
too low considering the information given in the context. This, again, shows the
difficulty of figuring out the correct threshold. Just as with the previous examples,
this score hovers right around 0.5. The system is close, but everything needs to be
‘good enough’ for it to perform well: accuracy of entity linking, confidence of entity
linker, sentence splitting, knowledge base, weights, threshold and more. This is a
delicate balance. Considering the 72% agreement between system and annotators
for context, 78% for common knowledge and 76% overall, it seems that this balance
was quite decent for the system created in this project.



6 C O N C L U S I O N

6.1 research questions
This project started with the following research question and sub questions:

How can a system decide if named entities in a text need an explanation?

1. How can context be captured and used to decide if a named entity
needs an explanation?

2. How can common knowledge be captured and used to decide if a
named entity needs an explanation?

The results showed that information from a knowledge base can be used to cap-
ture how well the context of a named entity explains it. A short description and the
first sentence of the abstract from the knowledge base were used to compare their
similarity to the entity’s context. This context window was set at three sentences
and were stripped from the entity itself and stop words, in an effort to only cap-
ture relevant information. Weights of 0.7 and 0.3 were assigned to the description
and abstract, respectively. This accounted for the description being used as the ex-
planation in the text and the abstract possibly containing more noisy information.
The results show that when the system made a decision based on context, human
annotators agreed with that decision in 72% of cases.

The second sub question was tackled by counting all occurrences of all named
entities in the corpus. The top 1% of the most common entities were deemed com-
mon knowledge and ignored by the system. The results show that here the system
and human annotators made the same decision in 78% of cases. The answer to the
main research question can be summarized as follows:

By comparing the context of a named entity to information in a knowl-
edge base and by counting entity occurrences in a suitable corpus to
determine which are common knowledge, a system can make a decision
if a named entity needs an explanation or not.

6.2 reflections and suggestions
Overall, the system preformed quite well and made the same decision as the human
annotators in 76% of cases. As shown in the results, there are improvements to be
made. First, there should be more measures in place to catch inaccuracies or errors
from the external parts of the system. Currently, there are some, but these are not
enough in some cases. Examples of external errors that the system could try to
catch:

• A disambiguation page instead of
an entity page

• Wrongly recognized entities

• Strange information in knowledge
base

• Odd sentence splitting

The system should theoretically improve the better the external components
perform. Since there are not a lot of Dutch entity linkers, it might be interesting
to alter the system to use a state of the art English entity linker. The approach in

19
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this project is not language dependent, to apply the system to another language the
system needs:

• An entity linker for that language

• Access to a version of Wikipedia
(or another knowledge base with
similar fields)

• A corpus from which to extract
common knowledge entities and to
create samples for validation from

• A Spacy model (or another NLP
method) with sentence splitting
and word embeddings

These parts are not hard to swap out. The most important part is mapping the
responses from the different components to the correct datatypes for the system.

To get to the current system, a lot of trial & error and experimentation was
needed since nothing similar has been done before. This means that there are most
certainly improvements to be had when trying different combinations of weights,
thresholds and parameters. The performance of current configuration is decent and
can be changed easily.

Experiments with different Dutch word embeddings were also done, a large
word2vec model, a large GloVe model and a standalone FastText model. From
all these, the built in Spacy one was the smallest, but preformed very similarly.
Considering the computational cost of the other models, the choice fell on Spacy.
For further research, other embedding approaches might be better for the task. The
wikipedia2vec model used by van Hulst et al. (2020) could be an interesting alterna-
tive since it possibly captures more information from the knowledge base that might
improve performance. The current embeddings are also trained on Wikipedia, but
not on metadata.

Finally, the source code of the system contains more explanations and details
and can be found at: https://github.com/WPoelman/thesis_is. It is a shame that
the validations are not of ideal quality. It seems that the system performed quite
well and that the project combined some approaches that have not been done before
in the automatic text simplification field. The current approach is language indepen-
dent and more configurations and methods are possible for the task at hand. There
is a lot of room for more experimentation, which might be interesting to explore
further.
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