What is "Typological Diversity" in NLP?

Esther Ploeger*Wessel Poelman*Department of Computer Science
Aalborg UniversityDepartment of Computer Science
KU Leuven

Miryam de LhoneuxJohannes BjervaDepartment of Computer ScienceDepartment of Computer ScienceKU LeuvenAalborg University

EMNLP – Nov 14, 2024

Are these language samples "typologically diverse"?

Are these language samples "typologically diverse"?

Multilingual NLP

- Increased interest in **generalization** across languages.
- Loosely based on **linguistic typology**.
- "We evaluate on a set of typologically diverse languages."
- What does this mean?

- ACL Anthology, NeurIPS, ICLR, ICML, AAAI & IJCAI
- Two annotators:
 - Claim?
 - o Dataset
 - Languages

- Create a sample that captures the **diversity** of the world's languages.
- Find **generalizations** across languages in the sample.
- Methods: random, probablity, variety, and convenience.

- Create a sample that captures the **diversity** of the world's languages.
- Find **generalizations** across languages in the sample.
- Methods: random, probablity, variety, and convenience.

Similar goals to multilingual NLP:

Generalization of models and datasets across languages

- Typology uses **geography** and **phylogeny** as priors for samples.
- NLP has access to the findings from typologists directly.
- Should we use the same priors...?

- Typology uses **geography** and **phylogeny** as priors for samples.
- NLP has access to the findings from typologists directly.
- Should we use the same priors...?

"The kind of variables that define **genealogical groups** and **tree shapes** have a very **different** nature from the kind of variables that define **typological diversity**."

- Stoll and Bickel (2013), based on Nichols (1996)

Collected Papers

- 194 total, 110 with claim
- 38 introduce datasets
- Most at EMNLP, ACL, LREC, NAACL

Languages

- 315 unique
- Range from 2 90 (median 11)
- 160 used just once
- 4 don't mention languages used
- Long tail of languages

6 6 6 6 5 5 5 5 5 5 5

0 -

Justifications from the papers	Number of languages used
"a reasonable variety of language families "	24
"languages from 10 language families and 13 sub-families "	18
"the languages in our corpus cover five primary language families , () and a range of morphological phenomena "	9
"languages that exhibit varying degrees of complexity for inflection . We also consider morphological characteristics coded in WALS "	30
"genetically and geographically diverse"	5

Can we approximate "typological diversity"?

- Many papers use geography and phylogeny as a proxy...
- However, geography != phylogeny != typology
- Use language descriptions to approximate.

Can we approximate "typological diversity"?

- Many papers use **geography** and **phylogeny** as a **proxy**...
- However, geography != phylogeny != typology
- Use language descriptions to approximate.
- Approximate the **proxies** using:
 - Geographic and genetic URIEL vectors
 - Calculate Mean Pairwise Distance (MPD) per sample
- Approximate typological diversity using:
 - Typological features from Grambank, calculate Feature Value Inclusion (FVI)
 - Syntactic URIEL vectors (using MPD, in graphs MPSD)

Approximations

Approximations

- A high **genetic** distance is achieved relatively quickly
- Feature Value Inclusion is very spread out
- What about the **number** of languages?

Approximations

Another view

XTREME-R (0.92)

Paper with highest FVI (0.95)

Are these language samples "typologically diverse"?

Are these language samples "typologically diverse"?

Why does this matter?

- Datasets that **claim** to be typologically diverse spread.
- These claims set **expectations** regarding **generalization**.
- **Downstream** evaluations can be **skewed**:

Why does this matter?

- Datasets that claim to be typologically diverse spread.
- These claims set **expectations** regarding **generalization**.
- **Downstream** evaluations can be **skewed**:

"Be careful when reporting **averages** for multilingual benchmarks, especially if making **claims about multilinguality**." - Anastasopoulos (2019)

"Using simple statistics, such as **average language performance**, might inject linguistic biases in favor of **dominant language families** into evaluation methodology." - Pikuliak & Simko (2022)

"In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including **challenging language-agnostic** retrieval tasks, and covers <u>50 typologically diverse languages</u>."

- Ruder et al. (2021)

"In order to catalyze meaningful progress, we extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks, including **challenging language-agnostic** retrieval tasks, and covers <u>50 typologically diverse languages</u>."

- Ruder et al. (2021)

- Not all languages are available for all tasks.
- Performance is reported on as **average per task**.
- What about grouping by **typological** properties?

Grouping languages per task by **inflection type**.

Highest number of languages in **orange**, lowest in **purple**.

Large gaps in **performance** and **coverage**.

Arguably not that diverse.

Subtask	Model	Overall	By F	Δ	Strong Pre	Weak Pre	Equal Pre & Suf	Strong Suf	Weak Suf	Little Aff	NA
Mewsli-X*	XLM-R-L	45.75 (11)	36.23 (<i>11</i>)	-9.52	- (0)	- (0)	- (0)	47.86 (<i>10</i>)	24.60 (<i>1</i>)	- (0)	- (0)
	mBERT	38.58 (11)	27.29 (<i>11</i>)	-11.29	- (0)	- (0)	- (0)	41.09 (<i>10</i>)	13.50 (<i>1</i>)	- (0)	- (0)
XNLI ⁺	XLM-R	79.24 (15)	76.54 (<i>15</i>)	-2.70	- (0)	71.20 (<i>1</i>)	- (0)	80.06 (12)	- (0)	78.35 (2)	- (0)
	mBERT	66.51 (15)	60.17 (<i>15</i>)	-6.35	- (0)	49.30 (<i>1</i>)	- (0)	68.60 (12)	- (0)	62.60 (2)	- (0)
	mT5	84.85 (15)	82.92 (<i>15</i>)	-1.92	- (0)	80.60 (<i>1</i>)	- (0)	85.57 (12)	- (0)	82.60 (2)	- (0)
LAReQA*	XLM-R-L	40.75 (<i>11</i>)	40.54 (<i>11</i>)	-0.22	- (0)	- (0)	- (0)	40.88 (9)	- (0)	40.20 (2)	- (0)
	mBERT	21.58 (<i>11</i>)	19.24 (<i>11</i>)	-2.35	- (0)	- (0)	- (0)	22.92 (9)	- (0)	15.55 (2)	- (0)
XQuAD [♠]	XLM-R-L	77.21 (11)	77.24 (11)	+0.04	- (0)	- (0)	- (0)	77.19 (9)	- (0)	77.30 (2)	- (0)
	mBERT	65.05 (11)	61.84 (11)	-3.21	- (0)	- (0)	- (0)	66.89 (9)	- (0)	56.80 (2)	- (0)
	mT5	81.54 (11)	80.55 (11)	-0.99	- (0)	- (0)	- (0)	82.10 (9)	- (0)	79.00 (2)	- (0)
MLQA [♠]	XLM-R-L	72.71 (7)	73.33 (7)	+0.62	- (0)	- (0)	- (0)	72.47 (6)	- (0)	74.20 (1)	- (0)
	mBERT	61.30 (7)	60.84 (7)	-0.46	- (0)	- (0)	- (0)	61.48 (6)	- (0)	60.20 (1)	- (0)
	mT5	75.59 (7)	75.97 (7)	+0.38	- (0)	- (0)	- (0)	75.43 (6)	- (0)	76.50 (1)	- (0)
Tatoeba [♦]	XLM-R	77.29 (41)	64.92 (<i>36</i>)	-12.36	- (0)	31.30 (<i>1</i>)	58.60 (<i>1</i>)	82.10 (28)	76.37 (<i>3</i>)	77.43 (<i>3</i>)	63.74 (5)
	mBERT	43.33 (41)	32.03 (<i>36</i>)	-11.30	- (0)	12.10 (<i>1</i>)	31.00 (<i>1</i>)	49.24 (28)	39.27 (<i>3</i>)	32.90 (<i>3</i>)	27.68 (5)
UD-POS [♠]	XLM-R-L	74.96 (<i>38</i>)	71.12 (<i>36</i>)	-3.84	- (0)	- (0)	74.30 (1)	79.75 (28)	71.05 (2)	45.98 (5)	84.50 (2)
	mBERT	70.90 (<i>38</i>)	64.43 (<i>36</i>)	-6.47	- (0)	- (0)	59.30 (1)	75.51 (28)	60.75 (2)	48.66 (5)	77.95 (2)
ХСОРА [•]	XLM-R	69.22 (11)	65.93 (9)	-3.28	- (0)	61.80 (<i>1</i>)	- (0)	73.93 (6)	- (0)	75.30 (2)	52.70 (2)
	mBERT	56.05 (11)	54.75 (9)	-1.30	- (0)	52.20 (<i>1</i>)	- (0)	57.70 (6)	- (0)	56.20 (2)	52.90 (2)
	mT5	74.89 (11)	73.24 (9)	-1.65	- (0)	74.10 (<i>1</i>)	- (0)	78.00 (6)	- (0)	77.60 (2)	63.25 (2)
WikiANN-NER ⁴	XLM-R-L	64.43 (48)	62.02 (<i>40</i>)	-2.41	- (0)	69.90 (<i>1</i>)	62.10 (<i>1</i>)	66.92 (<i>31</i>)	61.37 (<i>3</i>)	48.17 (<i>4</i>)	63.66 (8)
	mBERT	62.68 (48)	61.73 (<i>40</i>)	-0.95	- (0)	72.70 (<i>1</i>)	65.00 (<i>1</i>)	64.93 (<i>31</i>)	57.23 (<i>3</i>)	49.38 (<i>4</i>)	61.12 (8)
TyDiQA [♠]	XLM-R-L	64.29 (9)	62.57 (8)	-1.72	- (0)	66.40 (1)	- (0)	65.67 (6)	- (0)	59.10 (<i>1</i>)	59.10 (1)
	mBERT	58.36 (9)	55.09 (8)	-3.26	- (0)	59.70 (1)	- (0)	60.97 (6)	- (0)	46.20 (<i>1</i>)	53.50 (1)
	mT5	81.94 (9)	83.73 (8)	+1.78	- (0)	87.20 (1)	- (0)	80.52 (6)	- (0)	83.60 (<i>1</i>)	83.60 (1)

Grouping languages per task by **word order**.

Highest number of languages in **orange**, lowest in **purple**.

Large gaps in **performance** and **coverage**.

Arguably not that diverse.

Subtask	Model	Overall	By F	Δ	OSV	OVS	VOS	SVO	SOV	VSO	NDO	NA
MLQA [♠]	XLM-R-L mBERT mT5	72.71 (7) 61.30 (7) 75.59 (7)	70.83 (7) 57.14 (7) 74.06 (7)	-1.88 -4.16 -1.53	$\begin{vmatrix} -(0) \\ -(0) \\ -(0) \end{vmatrix}$	- (0) - (0) - (0)	- (0) - (0) - (0)	75.22 (4) 66.85 (4) 77.62 (4)	70.80 (1) 49.90 (1) 75.30 (1)	67.00 (1) 51.60 (1) 70.20 (1)	70.30 (1) 60.20 (1) 73.10 (1)	- (0) - (0) - (0)
LAReQA*	XLM-R-L	40.75 (<i>11</i>)	39.31 (<i>11</i>)	-1.44	- (0)	- (0)	- (0)	42.10 (6)	39.75 (2)	34.60 (<i>1</i>)	40.80 (2)	- (0)
	mBERT	21.58 (<i>11</i>)	19.75 (<i>11</i>)	-1.83	- (0)	- (0)	- (0)	24.10 (6)	15.10 (2)	17.00 (<i>1</i>)	22.80 (2)	- (0)
TyDiQA [♠]	XLM-R-L	64.29 (9)	62.80 (9)	-1.49	- (0)	- (0)	- (0)	67.26 (5)	58.55 (2)	62.60 (2)	- (0)	- (0)
	mBERT	58.36 (9)	56.91 (9)	-1.44	- (0)	- (0)	- (0)	61.24 (5)	55.55 (2)	53.95 (2)	- (0)	- (0)
	mT5	81.94 (9)	81.45 (9)	-0.50	- (0)	- (0)	- (0)	82.94 (5)	78.40 (2)	83.00 (2)	- (0)	- (0)
XQuAD [♠]	XLM-R-L mBERT mT5	77.21 (11) 65.05 (11) 81.54 (11)	77.11 (<i>11</i>) 63.55 (<i>11</i>) 81.04 (<i>11</i>)	-0.10 -1.50 -0.49	$ \begin{array}{c c} - (0) \\ - (0) \\ - (0) \end{array} $	- (0) - (0) - (0)	- (0) - (0) - (0)	76.70 (6) 67.35 (6) 82.22 (6)	76.55 (2) 56.60 (2) 79.10 (2)	74.40 (1) 62.20 (1) 80.30 (1)	80.80 (2) 68.05 (2) 82.55 (2)	- (0) - (0) - (0)
XNLI [♦]	XLM-R mBERT mT5	79.24 (15) 66.51 (15) 84.85 (15)	78.57 (15) 65.79 (15) 84.71 (15)	-0.67 -0.72 -0.14	$\begin{vmatrix} -(0) \\ -(0) \\ -(0) \end{vmatrix}$	- (0) - (0) - (0)	- (0) - (0) - (0)	80.31 (9) 68.19 (9) 85.39 (9)	75.10 (<i>3</i>) 60.03 (<i>3</i>) 81.83 (<i>3</i>)	77.20 (1) 66.00 (1) 84.50 (1)	81.65 (2) 68.95 (2) 87.10 (2)	- (0) - (0) - (0)
Mewsli-X*	XLM-R-L	45.75 (11)	45.66 (<i>11</i>)	-0.09	- (0)	- (0)	- (0)	53.16 (5)	35.98 (4)	28.70 (<i>1</i>)	64.80 (<i>1</i>)	- (0)
	mBERT	38.58 (11)	37.88 (<i>11</i>)	-0.71	- (0)	- (0)	- (0)	47.28 (5)	27.93 (4)	15.30 (<i>1</i>)	61.00 (<i>1</i>)	- (0)
Tatoeba [♦]	XLM-R	77.29 (41)	72.82 (<i>38</i>)	-4.46	- (0)	- (0)	- (0)	81.42 (<i>18</i>)	75.74 (<i>14</i>)	64.55 (2)	86.57 (<i>4</i>)	55.83 (<i>3</i>)
	mBERT	43.33 (41)	39.66 (<i>38</i>)	-3.67	- (0)	- (0)	- (0)	52.57 (<i>18</i>)	33.04 (<i>14</i>)	25.10 (2)	54.78 (<i>4</i>)	32.83 (<i>3</i>)
ХСОРА	XLM-R	69.22 (11)	66.16 (9)	-3.06	- (0)	- (0)	- (0)	72.89 (7)	72.90 (2)	- (0)	- (0)	52.70 (2)
	mBERT	56.05 (11)	55.17 (9)	-0.88	- (0)	- (0)	- (0)	57.11 (7)	55.50 (2)	- (0)	- (0)	52.90 (2)
	mT5	74.89 (11)	72.62 (9)	-2.27	- (0)	- (0)	- (0)	77.61 (7)	77.00 (2)	- (0)	- (0)	63.25 (2)
WikiANN-NER [♠]	XLM-R-L	64.43 (<i>48</i>)	65.10 (<i>43</i>)	+0.67	- (0)	- (0)	- (0)	66.80 (20)	59.74 (<i>17</i>)	57.95 (2)	79.70 (4)	61.30 (5)
	mBERT	62.68 (<i>48</i>)	63.98 (<i>43</i>)	+1.30	- (0)	- (0)	- (0)	67.34 (20)	54.26 (<i>17</i>)	58.80 (2)	75.92 (4)	63.58 (5)
UD-POS [♠]	XLM-R-L mBERT	74.96 (38) 70.90 (38)	77.45 (<i>36</i>) 71.60 (<i>36</i>)	+2.50 +0.69	- (0) - (0)	- (0) - (0)	- (0) - (0)	74.59 (20) 72.74 (20)	69.65 (<i>10</i>) 62.82 (<i>10</i>)	71.55 (2) 61.25 (2)	86.97 (4) 83.22 (4)	84.50 (2) 77.95 (2)

Limitations

- Coverage: no typological database covers every aspect of every language.
- Survey is based on abstracts and titles, papers may contain claims in other sections.
- Phylogeny and geography are useful for NLP, but arguably not for making claims about typological diversity.

Limitations

- Coverage: no typological database covers every aspect of every language.
- Survey is based on abstracts and titles, papers may contain claims in other sections.
- Phylogeny and geography are useful for NLP, but arguably not for making claims about typological diversity.

We believe that the reporting of typological diversity can be more principled than it currently is, despite incomplete resources!

Summary

- 1. There is **no consistent** definition or methodology when making 'typological diversity' claims.
- 2. Our approximations of typological diversity exhibit **considerable variation** across papers.
- 3. Averages and aggregated results can give **distorted** views of multilingual performance estimates.

Recommendations

- 1. Include an **operationalization** of 'typological diversity'.
- 2. Possibly add some empirical justification.
- 3. Including these has the potential to benefit multilingual NLP by allowing more **fine-grained insights**.

Acknowledgements

Thanks to:

- The TypNLP group at Aalborg University for useful feedback (especially Heather Lent).
- The LAGoM-NLP group at KU Leuven for insightful discussions and feedback (Thomas Bauwens for helping to create the tables using fiject).
- The audience for listening!

- EP and JB are funded by the Carlsberg Foudation under the Semper Ardens: Accelerate Programme (project nr. CF21-0454).
 - WP is funded by a KU Leuven Bijzonder Onderzoeksfonds C1 (project nr. C14/23/096).

wessel.poelman@kuleuven.be & espl@cs.aau.dk