
How Do I Choose Which Languages to Evaluate On?
Esther Ploeger♢, Wessel Poelman♠, Andreas Holck Høeg-Petersen♢, Anders Schlichtkrull♢, Miryam de Lhoneux♠ & Johannes Bjerva♢

♢Aalborg University, Denmark ♠KU Leuven, Belgium wessel.poelman@kuleuven.be

Random MaxMin MaxSum

1. Background
•Multilinguality is gaining interest in NLP.

• Some efforts focus on improving generalization across lan-
guages, often loosely basing this on structural descriptions of
languages from linguistic typology. An increasing number of
papersmake claimsof ‘typologically diverse’ language samples.

• However, this link with linguistic typology is often vague and
not principled, especially in language sampling.
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NLP and ML papers claiming to have ‘typologically diverse’ language samples.
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Language sampling algorithms:

• Random: sample languages completely randomly

• RandomFamily: stratify by language family,
sample uniformly and randomly

• RandomGenus: stratify by genus,
sample uniformly and randomly

• Convenience: sample top k frommost used languages
in previous research

•MaxSum: sample most diverse→ outliers
(variety sampling in typology)

•MaxMin: sample most diverse→ independence
(probability sampling in typology)

2. Contributions
• A framework to systematically sample languages.

• Metrics to quantify linguistic diversity of language samples.

• Two sampling methods that select more diverse samples than
random, convenience or phylogeny-inspired methods.

Metrics

MPD: Mean Pairwise Distance
Are we maximizing what we think?

FVO: Feature Value Overlap
Do we have overlap of values?

FVI: Feature Value Inclusion
Do we cover all feature values?

H: Shannon Entropy
Is there spread in the feature values?

3. Use Cases

1. Evaluation: What is a good and diverse sample to test
my phenomena of interest?

2. Dataset expansion: What are languages to add to my
multilingual dataset to increase diversity or coverage?

3.Other distance maximization: Not just typological fea-
tures, any language description works; What are the
most geographically distant languages in my frame?

Effects in diversity metrics from adding Seri to UD v2.14.

MPD ↑ MPD’ ↑ FVO ↓ FVO’ ↓ FVI ↑ FVI’ ↑ H ↑ H’ ↑

0.725 0.728 0.679 0.677 0.985 0.985 0.681 0.685

4. Intrinsic Evaluation
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Methods with an asterisk are non-deterministic; scores are averages over 10 random runs and bars represent standard deviation.

5. Takeaways

1. Justify claims of ‘typologically diverse’ samples.

2. Phylogeny != Geography != Typology.

3. Check out the Python package, QR code below!
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